Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Burns Trauma ; 12: tkad055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601971

RESUMO

Background: Prevention of diabetic heart myocardial ischemia-reperfusion (IR) injury (MIRI) is challenging. Propofol attenuates MIRI through its reactive oxygen species scavenging property at high doses, while its use at high doses causes hemodynamic instability. Salvianolic acid A (SAA) is a potent antioxidant that confers protection against MIRI. Both propofol and SAA affect metabolic profiles through regulating Adenosine 5'-monophosphate-activated protein kinase (AMPK). The aim of this study was to investigate the protective effects and underlying mechanisms of low doses of propofol combined with SAA against diabetic MIRI. Methods: Diabetes was induced in mice by a high-fat diet followed by streptozotocin injection, and MIRI was induced by coronary artery occlusion and reperfusion. Mice were treated with propofol at 46 mg/kg/h without or with SAA at 10 mg/kg/h during IR. Cardiac origin H9c2 cells were exposed to high glucose (HG) and palmitic acid (PAL) for 24 h in the absence or presence of cluster of differentiation 36 (CD36) overexpression or AMPK gene knockdown, followed by hypoxia/reoxygenation (HR) for 6 and 12 h. Results: Diabetes-exacerbated MIRI is evidenced as significant increases in post-ischemic infarction with reductions in phosphorylated (p)-AMPK and increases in CD36 and ferroptosis. Propofol moderately yet significantly attenuated all the abovementioned changes, while propofol plus SAA conferred superior protection against MIRI to that of propofol. In vitro, exposure of H9c2 cells under HG and PAL decreased cell viability and increased oxidative stress that was concomitant with increased levels of ferroptosis and a significant increase in CD36, while p-AMPK was significantly reduced. Co-administration of low concentrations of propofol and SAA at 12.5 µM in H9c2 cells significantly reduced oxidative stress, ferroptosis and CD36 expression, while increasing p-AMPK compared to the effects of propofol at 25 µM. Moreover, either CD36 overexpression or AMPK silence significantly exacerbated HR-induced cellular injuries and ferroptosis, and canceled propofol- and SAA-mediated protection. Notably, p-AMPK expression was downregulated after CD36 overexpression, while AMPK knockdown did not affect CD36 expression. Conclusions: Combinational usage of propofol and SAA confers superior cellular protective effects to the use of high-dose propofol alone, and it does so through inhibiting HR-induced CD36 overexpression to upregulate p-AMPK.

2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 78-84, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387903

RESUMO

OBJECTIVE: To explore the clinical characteristics, molecular characteristics, treatment and prognosis of pediatric Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) with a therapeutic target. METHODS: A total of 27 patients of Ph-like ALL with targeted drug target were initially diagnosed in Children's Hospital of Soochow University from December 2017 to June 2021. The data of age, gender, white blood cell (WBC) count at initial diagnosis, genetic characteristics, molecular biological changes, chemotherapy regimen, different targeted drugs were given, and minimal residual disease (MRD) on day 19, MRD on day 46, whether hematopoietic stem cell transplantation (HSCT) were retrospective analyed, and the clinical characteristics and treatment effect were summarized. Survival analysis was performed by Kaplan-Meier method. RESULTS: The intensity of chemotherapy was adjusted according to the MRD level during induced remission therapy in 27 patients, 10 patients were treated with targeted drugs during treatment, and 3 patients were bridged with HSCT, 1 patient died and 2 patients survived. Among the 24 patients who did not receive HSCT, 1 patient developed relapse, and achieved complete remission (CR) after treatment with chimeric antigen receptors T cells (CAR-T). The 3-year overall survival, 3-year relapse-free survival and 3-year event-free survival rate of 27 patients were (95.5±4.4)%, (95.0±4.9)% and (90.7±6.3)% respectively. CONCLUSION: Risk stratification chemotherapy based on MRD monitoring can improve the prognosis of Ph-like ALL in children, combined with targeted drugs can achieve complete remission as soon as possible in children whose chemotherapy response is poor, and sequential CAR-T and HSCT can significantly improve the therapeutic effect of Ph-like ALL in children whose MRD is continuously positive during induced remission therapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Criança , Humanos , Cromossomo Filadélfia , Estudos Retrospectivos , Prognóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Neoplasia Residual , Resposta Patológica Completa , Recidiva
3.
Skin Res Technol ; 30(2): e13611, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348734

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) and psoriasis (Ps) are common immune-mediated diseases that exhibit clinical comorbidity, possibly due to a common genetic structure. However, the exact mechanism remains unknown. METHODS: The study population consisted of IBD and Ps genome-wide association study (GWAS) data. Genetic correlations were first evaluated. Then, the overall evaluation employed LD score regression (LDSC), while the local assessment utilized heritability estimation from summary statistics (HESS). Causality assessment was conducted through two-sample Mendelian randomization (2SMR), and genetic overlap analysis utilized the conditional false discovery rate/conjunctional FDR (cond/conjFDR) method. Finally, LDSC applied to specifically expressed genes (LDSC-SEG) was performed at the tissue level. For IBD and Ps-specific expressed genes, genetic correlation, causality, shared genetics, and trait-specific associated tissues were methodically examined. RESULTS: At the genomic level, both overall and local genetic correlations were found between IBD and Ps. MR analysis indicated a positive causal relationship between Ps and IBD. The conjFDR analysis with a threshold of < 0.01 identified 43 loci shared between IBD and Ps. Subsequent investigations into disease-associated tissues indicated a close association of IBD and Ps with whole blood, lung, spleen, and EBV-transformed lymphocytes. CONCLUSION: The current research offers a novel perspective on the association between IBD and Ps. It contributes to an enhanced comprehension of the genetic structure and mechanisms of comorbidities in both diseases.


Assuntos
Doenças Inflamatórias Intestinais , Psoríase , Humanos , Estudo de Associação Genômica Ampla , Psoríase/genética , Pele , Doenças Inflamatórias Intestinais/genética , Expressão Gênica
4.
Biomed Pharmacother ; 168: 115816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918254

RESUMO

OBJECTIVE: Hypoxic pulmonary hypertension (HPH) is a progressive and life-threatening disease characterized by perivascular inflammation, pulmonary vascular remodeling, and occlusion. Mesenchymal stromal cell-derived exosomes (MSC-exo) have emerged as potential therapeutic agents due to their role in cell communication and the transportation of bioactive molecules. In this study, we aimed to investigate the therapeutic effects of MSC-exo against HPH and elucidate the underlying molecular mechanism. METHODS: Exosomes were isolated from conditioned media of human bone mesenchymal stromal cells using ultracentrifugation and characterized through western blotting, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). An HPH animal model was established in male SD rats, and MSC-exo or phosphate-buffered saline (PBS) were administered via the tail vein for three weeks. Subsequently, right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and pulmonary vascular remodeling were evaluated. Lung tissues from HPH rats and normal rats underwent high-throughput sequencing and transcriptomic analysis. Gene Ontology (GO) analysis was employed to identify upregulated differentially expressed genes. Additionally, rat pulmonary artery smooth muscle cells (PASMC) exposed to platelet-derived growth factor-BB (PDGF-BB) were used to simulate HPH-related pathological behavior. In vitro cellular models were established to examine the molecular mechanism of MSC-exo in HPH. RESULTS: MSC-exo administration protected rats from hypoxia-induced increases in RVSP, RVHI, and pulmonary vascular remodeling. Additionally, MSC-exo alleviated PDGF-BB-induced proliferation and migration of PASMC. Transcriptomic analysis revealed 267 upregulated genes in lung tissues of HPH rats compared to control rats. Gene Ontology analysis indicated significant differences in pathways associated with Yes Associated Protein 1 (YAP1), a key regulator of cell proliferation and organ size. RT-qPCR and western blot analysis confirmed significantly increased expression of YAP1 in HPH lung tissues and PASMC, which was inhibited by MSC-exo treatment. Furthermore, analysis of datasets demonstrated that Secreted Phosphoprotein 1 (SPP1), also known as Osteopontin (OPN), is a downstream binding protein of YAP1 and can be upregulated by PDGF-BB. MSC-exo treatment reduced the expression of both YAP1 and SPP1. Lentivirus-mediated knockdown of YAP1 inhibited PDGF-BB-induced PASMC proliferation, migration, and SPP1 protein levels. CONCLUSION: Our findings demonstrate that MSC-exo exert a therapeutic effect against hypoxia-induced pulmonary hypertension by modulating the YAP1/SPP1 signaling pathway. The inhibition of YAP1 and downstream SPP1 expression by MSC-exo may contribute to the attenuation of pulmonary vascular remodeling and PASMC proliferation and migration. These results suggest that MSC-exo could serve as a potential therapeutic strategy for the treatment of HPH. Further investigations are warranted to explore the clinical applicability of MSC-exo-based therapies in HPH patients.


Assuntos
Exossomos , Hipertensão Pulmonar , Células-Tronco Mesenquimais , Humanos , Ratos , Masculino , Animais , Hipertensão Pulmonar/metabolismo , Osteopontina/metabolismo , Exossomos/metabolismo , Becaplermina/farmacologia , Remodelação Vascular , Ratos Sprague-Dawley , Hipóxia/metabolismo , Transdução de Sinais , Artéria Pulmonar/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Células Cultivadas
6.
Biomed Pharmacother ; 167: 115517, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738794

RESUMO

Skeletal muscle, the largest organ in the human body, plays a crucial role in supporting and defending the body and is essential for movement. It also participates in regulating the processes of protein synthesis and degradation. Inhibition of protein synthesis and activation of degradation metabolism can both lead to the development of skeletal muscle atrophy, a pathological condition characterized by a decrease in muscle mass and fiber size. Many physiological and pathological conditions can cause a decline in muscle mass, but the underlying mechanisms of its pathogenesis remain incompletely understood, and the selection of treatment strategies and efficacy evaluations vary. Moreover, the early symptoms of this condition are often not apparent, making it easily overlooked in clinical practice. Therefore, it is necessary to develop and use cell models to understand the etiology and influencing factors of skeletal muscle atrophy. In this review, we summarize the methods used to construct skeletal muscle cell models, including hormone, inflammation, cachexia, genetic engineering, drug, and physicochemical models. We also analyze, compare, and evaluate the various construction and assessment methods.


Assuntos
Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Caquexia/patologia , Biossíntese de Proteínas
7.
Int J Genomics ; 2023: 6422941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434634

RESUMO

Objective: Skin cutaneous melanoma (SKCM) is a highly lethal malignancy that poses a significant threat to human health. Recent research has shown that competing endogenous RNA (ceRNA) regulatory networks play a critical role in the development and progression of various types of cancer, including SKCM. The objective of this study is to investigate the ceRNA regulatory network associated with the transmembrane protein semaphorin 6A (SEMA6A) and identify the underlying molecular mechanisms involved in SKCM. Methods: Expression profiles of four RNAs, including pseudogenes, long non-coding RNAs, microRNAs, and mRNAs were obtained from The Cancer Genome Atlas database. The analysis was completed by bioinformatics methods, and the expression levels of the selected genes were verified by cell experiments. Results: Bioinformatics analysis revealed that the LINC00511-hsa-miR-625-5p-SEMA6A ceRNA network was associated with SKCM prognosis. Furthermore, immune infiltration analysis indicated that the LINC00511-hsa-miR-625-5p-SEMA6A axis may have an impact on changes in the tumor immune microenvironment of SKCM. Conclusion: The LINC00511-hsa-miR-625-5p-SEMA6A axis could be a promising therapeutic target and a prognostic biomarker for SKCM.

8.
Microsc Res Tech ; 86(10): 1391-1400, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37119118

RESUMO

We describe a simple and robust calibration approach for axial-scanning microscopy that realizes axial focus shifts with an electrically tunable lens (ETL). We demonstrate the calibration approach based on a microscope with an ETL placed close to the rear stop of the objective lens. By introducing a target-consisted of repeating lines at one known frequency and placed at a ~45° angle to the imaging path, the calibration method captures multiple images at different ETL currents and calibrates the dependence of the axial focus shift on the ETL current by evaluating the sharpness of the captured images. It calibrates the dependence of the magnification of the microscope on the ETL current by measuring the period of the repeating lines in the captured images. The experimental results show that different from the conventional calibration procedure, the proposed scheme does not involve any mechanical scanning and can simultaneously calibrate the dependence of the axial focus shift and the magnification on the ETL current. This might facilitate imaging studies that require the measurement of fine structures in a 3D volume. We also show the calibration procedure can be used to estimate the radius of a conner-arc sample, fabricated using laser micromachining. We believe that this easy-to-use calibration approach may facilitate use of ETLs for a variety of imaging platforms. It may also provide new insights for the development of novel 3D surface measurement methods. RESEARCH HIGHLIGHTS: The proposed calibration scheme does not involve any mechanical scanning and can simultaneously calibrate the dependence of the axial focus shift and the magnification on the electrically tunable lens (ETL) current. It might facilitate imaging studies that require the measurement of fine structures in a 3D volume, and the use of ETLs for a variety of imaging platforms. It may also provide new insights for the development of novel 3D surface measurement methods.

9.
Int J Cancer ; 153(4): 792-802, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919366

RESUMO

We aim to assess the safety and efficacy of proxalutamide, a novel androgen receptor antagonist, for men with metastatic castration-resistant prostate cancer (mCRPC) in a multicenter, randomized, open-label, phase 2 trial. In our study, the enrolled mCRPC patients were randomized to 100, 200 and 300 mg dose groups at 1:1:1. The primary efficacy endpoint was prostate-specific antigen (PSA) response rate. The secondary endpoints included objective response rate (ORR), disease control rate (DCR) and time to PSA and radiographic progression. Safety and pharmacokinetics were also assessed. Finally, there were 108 patients from 17 centers being enrolled. By week 16, there were 13 (35.1%), 12 (36.4%) and 15 (42.9%) patients with confirmed 50% or greater PSA decline in 100 mg (n = 37), 200 mg (n = 33) and 300 mg (n = 35) groups, respectively. Among the 19 patients with target lesions at study entry, three (15.8%) had a partial response and 12 (63.2%) had stable disease. The ORRs of 20.0%, 22.2%, 0% and DCRs of 80.0%, 88.9%, 60.0% were, respectively, achieved in 100, 200 and 300 mg groups. By the maximum follow-up time of 24 weeks, there were 42.6% and 10.2% of cases experiencing PSA progression and radiographic progression, respectively. Overall, adverse events (AEs) were experienced by 94.4% of patients, most of which were mild or moderate. There were 28 patients experiencing ≥grade 3 AEs. The most common AEs were fatigue (17.6%), anemia (14.8%), elevated AST (14.8%) and ALT (13.0%), decreased appetite (13.0%). These findings preliminarily showed the promising antitumor activity of proxalutamide in patients with mCRPC with a manageable safety profile. The proxalutamide dose of 200 mg daily is recommended for future phase 3 trial (Clinical trial registration no. CTR20170177).


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Antígeno Prostático Específico , Tioidantoínas/efeitos adversos , Antagonistas de Receptores de Andrógenos , Resultado do Tratamento
10.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834841

RESUMO

The progression and remission of cervical spondylotic myelopathy (CSM) are quite unpredictable due to the ambiguous pathomechanisms. Spontaneous functional recovery (SFR) has been commonly implicated in the natural course of incomplete acute spinal cord injury (SCI), while the evidence and underlying pathomechanisms of neurovascular unit (NVU) compensation involved in SFR remains poorly understood in CSM. In this study, we investigate whether compensatory change of NVU, in particular in the adjacent level of the compressive epicenter, is involved in the natural course of SFR, using an established experimental CSM model. Chronic compression was created by an expandable water-absorbing polyurethane polymer at C5 level. Neurological function was dynamically assessed by BBB scoring and somatosensory evoked potential (SEP) up to 2 months. (Ultra)pathological features of NVUs were presented by histopathological and TEM examination. Quantitative analysis of regional vascular profile area/number (RVPA/RVPN) and neuroglial cells numbers were based on the specific EBA immunoreactivity and neuroglial biomarkers, respectively. Functional integrity of blood spinal cord barrier (BSCB) was detected by Evan blue extravasation test. Although destruction of the NVU, including disruption of the BSCB, neuronal degeneration and axon demyelination, as well as dramatic neuroglia reaction, were found in the compressive epicenter and spontaneous locomotor and sensory function recovery were verified in the modeling rats. In particular, restoration of BSCB permeability and an evident increase in RVPA with wrapping proliferated astrocytic endfeet in gray matter and neuron survival and synaptic plasticity were confirmed in the adjacent level. TEM findings also proved ultrastructural restoration of the NVU. Thus, NVU compensation changes in the adjacent level may be one of the essential pathomechanisms of SFR in CSM, which could be a promising endogenous target for neurorestoration.


Assuntos
Compressão da Medula Espinal , Doenças da Medula Espinal , Traumatismos da Medula Espinal , Espondilose , Ratos , Animais , Compressão da Medula Espinal/patologia , Recuperação de Função Fisiológica , Espondilose/patologia , Potenciais Somatossensoriais Evocados
11.
Clin Exp Med ; 23(6): 2561-2570, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36598673

RESUMO

Acute graft-versus-host disease (aGVHD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) and is primarily treated with steroids. However, there is no standard treatment for steroid-refractory acute graft-versus-host disease (SR-aGVHD). Although mesenchymal stem cells (MSCs) have proven effective for SR-aGVHD, few reports have focused on human umbilical cord blood-derived MSCs (hUCB-MSCs). Here, we report on the efficiency of hUCB-MSCs as the salvage therapy for SR-aGVHD in 54 patients. The overall response rate (ORR) reached 59.3% (32/54) 28 days later. Twenty-four patients achieved complete remission (CR), and 8 achieved partial remission (PR). The median follow-up time after the initiation of hUCB-MSC treatment was 19.3 (0.6-59.0) months. The probability of overall survival (OS) and progression-free survival (PFS) was 60.9% (47.4-74.4%, 95% CI) and 58.8% (45.3-72.3%, 95% CI), respectively, while that of GVHD/relapse-free survival (GRFS) was only 30.8% (17.86-43.74%, 95% CI). Multivariate analysis revealed that response on Day 28 was an independent favorable prognostic factor (OS, P < 0.001; PFS, P < 0.001; GRFS, P = 0.001), but an age of ≥ 18 years suggested an unfavorable long-term prognosis (OS, P < 0.001; PFS, P < 0.001; GRFS, P = 0.003). In addition, liver involvement was adversely associated with PFS (P = 0.021) and GRFS (P = 0.009). An infused MNC ≥ 8.66 × 108/kg was also detrimental to GRFS (P = 0.031). Collectively, our results support hUCB-MSCs as an effective treatment for SR-aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Adolescente , Terapia de Salvação/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Esteroides , Recidiva , Doença Enxerto-Hospedeiro/terapia , Doença Enxerto-Hospedeiro/etiologia , Cordão Umbilical , Transplante de Células-Tronco Mesenquimais/métodos
12.
J Tissue Eng Regen Med ; 16(12): 1223-1237, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36349393

RESUMO

The microenvironment in the healing process of large bone defects requires suitable conditions to promote osteogenesis and angiogenesis. Coaxial electrospinning is a mature method in bone tissue engineering (BTE) and allows functional modification. Appropriate modification methods can be used to improve the bioactivity of scaffolds for BTE. In this study, coaxial electrospinning with QK peptide (a Vascular endothelial growth factor mimetic peptide) and BMP-2 peptide-DFO (BD) was performed to produce double-modified PQBD scaffolds with vascularizing and osteogenic features. The morphology of coaxially electrospun scaffolds was verified by scanning electron microscopy (SEM) and transmission electron microscopy. Laser scanning confocal microscopy and Fourier transform infrared spectroscopy confirmed that BD covalently bound to the surface of the P and PQ scaffolds. In vitro, the PQBD scaffold promoted the adhesion and proliferation of bone marrow stromal cells (BMSCs). Both QK peptide and BD showed sustainable release and preservation of biological activity, enhancing the osteogenic differentiation of BMSCs and the migration of human umbilical vein endothelial cells and promoting angiogenesis. The combined ability of these factors to promote osteogenesis and angiogenesis is superior to that of each alone. In vivo, the PQBD scaffold was implanted into the bone defect, and after 8 weeks, the defect area was almost completely covered by new bone tissue. Histology showed more mature bone tissue and more blood vessels. PQBD scaffolds promote both angiogenesis and osteogenesis, offering a promising approach to enhance bone regeneration in the treatment of large bone defects.


Assuntos
Desferroxamina , Osteogênese , Humanos , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular , Regeneração Óssea , Engenharia Tecidual/métodos , Diferenciação Celular , Peptídeos/farmacologia , Peptídeos/química , Células Endoteliais da Veia Umbilical Humana
13.
Front Immunol ; 13: 997589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131934

RESUMO

Background: Patients with relapsed or refractory (R/R) lymphomas have benefited from chimeric antigen receptor (CAR)-T-cell therapy. However, this treatment is linked to a high frequency of adverse events (AEs), such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and hematologic toxicity. There has been increasing interest in hematological toxicity in recent years, as it can result in additional complications, such as infection or hemorrhage, which remain intractable. Methods: We conducted a retrospective, single-institution study to evaluate the patterns and outcomes of cytopenia following CAR-T-cell infusion and potential associated factors. Results: Overall, 133 patients with R/R lymphoma who received CAR-T-cell therapy from June, 2017 to April, 2022 were included in this analysis. Severe neutropenia, anemia and thrombocytopenia occurred frequently (71, 30 and 41%, respectively) after CAR-T-cell infusion. A total of 98% of severe neutropenia and all severe thrombocytopenia cases occurred in the early phase. Early severe cytopenia was associated with CRS incidence and severity, as well as peak inflammatory factor (IL-6, C-reactive protein (CRP), and ferritin) levels. In multivariate analysis, prior hematopoietic stem cell transplantation (HSCT), baseline hemoglobin (HB), and lymphodepleting chemotherapy were independent adverse factors associated with early severe cytopenia. In addition, 18% and 35% of patients had late neutrophil- and platelet (PLT)-related toxicity, respectively. In multivariate analysis, lower baseline PLT count was an independent factor associated with late thrombocytopenia. More severe cytopenia was associated with higher infection rates and poorer survival. Conclusions: This research indicates that improved selection of patients and management of CRS may help to decrease the severity of cytopenias and associated AEs and improve survival following CAR-T-cell therapy. Clinical Trial Registration: https://www.clinicaltrials.gov/ct2/show/NCT03196830, identifier NCT03196830.


Assuntos
Anemia , Linfoma , Neutropenia , Receptores de Antígenos Quiméricos , Trombocitopenia , Anemia/etiologia , Proteína C-Reativa/metabolismo , Síndrome da Liberação de Citocina/etiologia , Ferritinas , Humanos , Imunoterapia Adotiva/efeitos adversos , Interleucina-6/metabolismo , Linfoma/etiologia , Linfoma/terapia , Neutropenia/etiologia , Estudos Retrospectivos , Linfócitos T , Trombocitopenia/etiologia
14.
Curr Protein Pept Sci ; 23(11): 791-809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173063

RESUMO

OBJECTIVE: Skin cutaneous melanoma(SKCM) is the most severe, and complex disease of all skin cancers. The molecular mechanisms of this cancer progression are not well understood. METHODS: GEPIA online database was used to validate the differentially expressed genes from two GEO datasets. The prognostic value was calculated by the Kaplan-Meier method. RT-qPCR verified the expression of TUBB4A in SKCM cell line, and the immunohistochemistry of TUBB4A in SKCM and normal skin tissues were gained from Human Protein Atlas. Seven target prediction databases predicted potential microRNAs(miRNAs), and upstream long non-coding RNAs(lncRNAs) were predicted by starBase. The co-expressed gene of TUBB4A was obtained using the two online analysis sites UALCAN and starBase. These co-expressed genes were performed by enrichment analysis, and immune infiltration result was obtained by the TIMER2 online database. The receiver operating characteristic( ROC) curve was applied to evaluate the diagnostic value of TUBB4A in the SKCM and normal skin group. A new nomogram about TUBB4A was constructed to forecast the survival rate of SKCM patients at 1, 3, and 5 years. RESULTS: Firstly, we found that DLL3 and TUBB4A were significantly higher expressed in skin cutaneous melanoma than normal skin. Subsequently, by analyzing progress-free interval(PFI), diseasespecific survival(DSS), and disease-free survival(DFS), only TUBB4A was the most potent gene for inhibiting shin cutaneous melanoma progression. In gene ontology(GO)/ kyoto encyclopedia of genes and genomes(KEGG) analysis, TUBB4A may play a key role in the progression of skin cutaneous melanoma by regulating mitochondrial function and affecting cellular metabolism, possibly related to the immune infiltration of CD4+Th1 cells and NK cells. The upstream non-coding RNA(ncRNA) acts through the SNHG16-hsa-let-7b-5p-TUBB4A axis. CONCLUSION: In conclusion, we elucidated the regulatory role of the SNHG16-hsa-let-7b-5p-TUBB4A axis in the progression of skin cutaneous melanoma by modulating mitochondrial function to affect cellular metabolism. TUBB4A may be a promising diagnostic biomarker and therapeutic target for cutaneous skin melanoma.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Neoplasias Cutâneas , Humanos , RNA Longo não Codificante/genética , Melanoma/diagnóstico , Melanoma/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , MicroRNAs/genética , RNA Mensageiro , Proteínas de Membrana , Peptídeos e Proteínas de Sinalização Intracelular , Tubulina (Proteína)/genética , Melanoma Maligno Cutâneo
15.
Vet Microbiol ; 273: 109541, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36027683

RESUMO

Classical swine fever (CSF) is a highly contagious and important swine disease in China. Sporadic outbreaks with mild clinical signs are still being reported despite massive vaccination with the CSF C-strain vaccine. One possible reason for vaccine failure could be interference from maternally derived antibodies (MDAs) during vaccination in the field. The aim of this study was to evaluate the efficacy of different CSF vaccines in the presence of MDAs and to assess the different vaccination schemes in the field. The results demonstrated that vaccination with a single dose of C-strain-PK vaccine protected pigs against severe clinical signs and significantly reduced viremia. The impact of MDAs was negligible. The interference was also mild during a prime and boost vaccination scheme using the C-strain-ST vaccine. In contrast, a significant influence of MDAs on the efficacy of the subunit E2 vaccine in a one-dose vaccination scheme was observed, with pigs showing severe clinical signs, CSF-associated death, typical pathological lesions and a high level of viremia after challenge, despite robust E2 antibody induction. A field vaccination and challenge study further confirmed the superior effectiveness of a single dose of C-strain-PK vaccine in the presence of MDAs in comparison to a routine prime and boost vaccination scheme applied in the field, with pigs having fever, chronic signs, significant viremia and shedding after challenge. Delaying the vaccination time from the age of 28 days to 45 days, when MDA was low, was beneficial for improving the clinical protection and immunity induced by vaccines. Altogether, the results presented here emphasize that a high-quality vaccine and a scientific design of the vaccination scheme based on serological surveillance are essential pillars to control and eliminate CSF in China.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Animais , Anticorpos Antivirais , Suínos , Vacinação/veterinária , Vacinas de Subunidades Antigênicas , Viremia/veterinária
16.
Biotechnol Bioeng ; 119(11): 3297-3310, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35923072

RESUMO

Silicate-substituted calcium phosphate (Si-CaP) ceramics, alternative materials for autogenous bone grafting, exhibit excellent osteoinductivity, osteoconductivity, biocompatibility, and biodegradability; thus, they have been widely used for treating bone defects. However, the limited control over the spatial structure and weak mechanical properties of conventional Si-CaP ceramics hinder their wide application. Here, we used digital light processing (DLP) printing technology to fabricate a novel porous 3D printed Si-CaP scaffold to enhance the scaffold properties. Scanning electron microscopy, compression tests, and computational fluid dynamics simulations of the 3D printed Si-CaP scaffolds revealed a uniform spatial structure, appropriate mechanical properties, and effective interior permeability. Furthermore, compared to Si-CaP groups, 3D printed Si-CaP groups exhibited sustained release of silicon (Si), calcium (Ca), and phosphorus (P) ions. Furthermore, 3D printed Si-CaP groups had more comprehensive and persistent osteogenic effects due to increased osteogenic factor expression and calcium deposition. Our results show that the 3D printed Si-CaP scaffold successfully improved bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, and osteogenic differentiation and possessed a distinct apatite mineralization ability. Overall, with the help of DLP printing technology, Si-CaP ceramic materials facilitate the fabrication of ideal bone tissue engineering scaffolds with essential elements, providing a promising approach for bone regeneration.


Assuntos
Osteogênese , Engenharia Tecidual , Apatitas , Regeneração Óssea , Cálcio , Fosfatos de Cálcio/química , Proliferação de Células , Preparações de Ação Retardada , Fósforo , Porosidade , Impressão Tridimensional , Silicatos/química , Silício , Engenharia Tecidual/métodos , Alicerces Teciduais/química
17.
Phys Rev Lett ; 128(22): 223201, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35714238

RESUMO

Ultracold polar molecules (UPMs) are emerging as a novel and powerful platform for fundamental applications in quantum science. Here, we report characterization of the coherence between nuclear spin levels of ultracold ground-state sodium-rubidium molecules loaded into a 3D optical lattice with a nearly photon scattering limited trapping lifetime of 9(1) seconds. After identifying and compensating the main sources of decoherence, we achieve a maximum nuclear spin coherence time of T_{2}^{*}=3.3(6) s with two-photon Ramsey spectroscopy. Furthermore, based on the understanding of the main factor limiting the coherence of the two-photon Rabi transition, we obtain a Rabi line shape with linewidth below 0.8 Hz. The simultaneous realization of long lifetime and coherence time, and ultrahigh spectroscopic resolution in our system unveils the great potentials of Ultracold polar molecules in quantum simulation, computation, and metrology.

18.
Sci Total Environ ; 839: 156300, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636535

RESUMO

Accumulating evidence reveals that exposure to alternative flame retardants (AFRs) results in defective thyroid functions. AFRs are detectable in various environmental media in developed cities in China. However, few studies have reported the contamination levels of AFR in groundwater in rural areas, indicating an urgent need to investigate exposure of AFRs and perform health risk assessment for populations that use groundwater as the main source of drinking water. This study investigated the concentrations of AFRs in groundwater in rural areas of central China. Moreover, Nthy-ori-3-1 cells were used to determine the thyroid cytotoxicities and thyroid-interfering effects of a single AFR as well as the mixtures of AFRs based on the AFR contamination levels in real-world. The results revealed that all classes of AFRs were detectable in rural areas in central China. Dechlorane plus, hexabromocyclododecane, bromophenols (BPs), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) exhibited spatial contamination patterns, with an average concentrations (median) of 157.89 ± 88.61 (185.47) pg/L, 0.09 ± 0.29 (not detectable) ng/L, 5.20 ± 5.92 (3.43) ng/L, 3338.11 ± 3758.78 (2836.72) pg/L, and 79.35 ± 97.19 (53.62) ng/L, respectively. The half maximal effective concentrations (EC50) of BPs, OPFRs, and NBFRs ranged 98.4-4012 µM, 42.0-2506 µM, and 10.1-203.7 µM, respectively. Several AFRs exhibited more cytotoxic effects than did traditional brominated flame retardants. It is intriguing that several single AFRs and mixtures at environmentally-relevant exposure levels promoted the viability of Nthy-ori-3-1 cells. Taken together, our study demonstrates that AFRs are present in the groundwater in rural areas in central China and AFRs exhibit thyroid disrupting effects.


Assuntos
Retardadores de Chama , Água Subterrânea , China , Monitoramento Ambiental , Retardadores de Chama/análise , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/toxicidade , Organofosfatos , Glândula Tireoide
19.
BMC Public Health ; 22(1): 434, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246096

RESUMO

BACKGROUND: In October 2015, China's one-child policy was universally replaced by a so-called two-child policy. This study investigated the association between the enactment of the new policy and changes in the number of births, and health-related birth outcomes. METHODS: We used difference-in-difference model to analyse the birth record data in Pudong New Area, Shanghai.The design is descriptive before-and-after comparative study. RESULTS: The data covered three policy periods: the one-child policy period (January 2008 to November 2014); the partial two-child policy period (December 2014 to June 2016); the universal two-child policy period (July 2016 to December 2017). There was an estimate of 7656 additional births during the 18 months of the implementation of the universal two-child policy. The trend of monthly percentage of births to mothers aged ≥35 increased by 0.24 percentage points (95% confidence interval 0.19 to 0.28, p < 0.001) during the same period. Being a baby boy, preterm birth, low birth weight, parents with lower educational attainment, and assisted delivery were associated with a higher risk of birth defects. CONCLUSIONS: The universal two-child policy was associated with an increase in the number of births and maternal age. Preterm birth, low birth weight, and assisted delivery were associated with a higher risk of birth defects, which suggested that these infants needed additional attention in the future.


Assuntos
Política de Planejamento Familiar , Nascimento Prematuro , Coeficiente de Natalidade , China/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Políticas , Gravidez , Nascimento Prematuro/epidemiologia
20.
Am J Hematol ; 97(5): 537-547, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114022

RESUMO

Few prospective studies have examined posttransplant chimeric antigen receptor (CAR) T cell infusion as candidates for front-line consolidation therapy for high-risk multiple myeloma (MM) patients. This single-arm exploratory clinical trial is the first to evaluate the safety and efficacy of sequential anti-CD19 and anti-BCMA CAR-T cell infusion, followed by lenalidomide maintenance after autologous stem cell transplantation (ASCT), in 10 high-risk newly diagnosed multiple myeloma (NDMM) patients. The treatment was generally well tolerated, with hematologic toxicities being the most common grade 3 or higher adverse events. All patients had cytokine release syndrome (CRS), which was grade 1 in 5 patients (50%) and grade 2 in 5 patients (50%). No neurotoxicity was observed after CAR-T cell infusion. The overall response rate was 100%, with the best response being 90% for a stringent complete response (sCR), and 10% for a complete response (CR). At a median follow-up of 42 (36-49) months, seven (70%) of 10 patients showed sustained minimal residual disease (MRD) negativity for more than 2 years. The median progression-free survival (PFS) and overall survival (OS) were not reached. Although the sample size was small and there was a lack of control in this single-arm study, the clinical benefits observed warrant ongoing randomized controlled trials.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Imunoterapia Adotiva/efeitos adversos , Lenalidomida , Mieloma Múltiplo/tratamento farmacológico , Estudos Prospectivos , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA