Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(23): 11203-11210, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38774976

RESUMO

One-dimensional (1D) Zn-based heterostructures have attracted considerable interest in the field of photodetection because of their tunable properties, flexibility, and unique optoelectronic properties. However, designing 1D multi-component Zn-based heterostructures for advanced photodetectors is still a great challenge. Herein, comb-like 1D-1D ZnO-ZnSe heterostructures with ZnO and ZnSe nanowires (NWs) comprising the shaft and teeth of a comb are reported. The length of the ZnO NWs can be modulated in the range of 300-1200 nm. Microstructural characterizations confirm that the 1D heterostructure clearly shows the spatial distribution of individual components. The well-designed structure displays an extended broadband photoresponse and higher photosensitivity than pure ZnSe NWs. Furthermore, ZnSe NWs with an appropriate length of ZnO branches show increased photoresponses of 3835% and 798% compared to those of pure ZnSe NWs under green and red-light irradiation, respectively. In addition, the integrated flexible photodetector presents excellent folding endurance after 1000 bending tests. This well-designed structure has significant potential for other 1D-based semiconductors in optoelectronic applications.

2.
Langmuir ; 39(43): 15380-15390, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37861436

RESUMO

Mixture adsorption properties of porous materials are critical to determine their potential as adsorbents in separation applications. Toward the discovery of optimal adsorbents, in silico screening studies typically employ the grand canonical Monte Carlo (GCMC) technique to compute adsorption properties of gas mixtures in materials of interest at a given condition (i.e., composition, total pressure, and temperature) or to compute their adsorption properties for each component, followed by utilizing methods to predict mixture adsorption isotherms. However, the former approach results in the need for repeated calculations when different conditions such as compositions are considered. For the latter, the predictions may involve uncertainties, sometimes originating from the fitting quality to the pure component isotherms, and repeated simulations may also be needed for different temperatures. To this end, this study demonstrates the potential of flat histogram Monte Carlo methods in addressing the abovementioned shortfalls. Specifically, the so-called NVT + W method, first reported by Smit and co-workers, is extended herein to determine the macrostate probability distribution (MPD) of binary mixtures in porous materials. The obtained MPD can be reweighted to any conditions, yielding accurate adsorption isotherms of any desired compositions and temperatures. This approach, denoted as 2D NVT + W, is also compared with the widely adopted ideal adsorbed solution theory (IAST) method, and the former is found to offer more reliable predictions. Overall, the 2D NVT + W approach represents an efficient and effective alternative to compute mixture adsorption isotherms for porous materials, and the obtained MPD can be conveniently reused by peer researchers. A user-friendly Python code is also provided along with this article to employ this method.

3.
ACS Nano ; 14(7): 8539-8550, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32520534

RESUMO

The rechargeable aluminum-ion battery (AIB) is a promising candidate for next-generation high-performance batteries, but its cathode materials require more development to improve their capacity and cycling life. We have demonstrated the growth of MoSe2 three-dimensional helical nanorod arrays on a polyimide substrate by the deposition of Mo helical nanorod arrays followed by a low-temperature plasma-assisted selenization process to form novel cathodes for AIBs. The binder-free 3D MoSe2-based AIB shows a high specific capacity of 753 mAh g-1 at a current density of 0.3 A g-1 and can maintain a high specific capacity of 138 mAh g-1 at a current density of 5 A g-1 with 10 000 cycles. Ex situ Raman, XPS, and TEM characterization results of the electrodes under different states confirm the reversible alloying conversion and intercalation hybrid mechanism during the discharge and charge cycles. All possible chemical reactions were proposed by the electrochemical curves and characterization. Further exploratory works on interdigital flexible AIBs and stretchable AIBs were demonstrated, exhibiting a steady output capacity under different bending and stretching states. This method provides a controllable strategy for selenide nanostructure-based AIBs for use in future applications of energy-storage devices in flexible and wearable electronics.

4.
ACS Appl Mater Interfaces ; 12(28): 32041-32053, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32400158

RESUMO

In this work, we demonstrated nano-scaled Laue diffractions by a focused polychromatic synchrotron radiation beam to discover what happens in MoS2 when van der Waals epitaxy is locally invalid. A stronger exciton recombination with a local charge depletion in the density of 1 × 1013 cm-2, extrapolated by Raman scattering and photoluminescence, occurs in grains, which exhibits a preferred orientation of 30° rotation with respect to the c-plane of a sapphire substrate. Else, the charge doping and trion recombination dominate instead. In addition to the breakthrough in extrapolating mesoscopic crystallographic characteristics, this work opens the feasibility to manipulate charge density by the selection of the substrate-induced disturbances without external treatment and doping. Practically, the 30° rotated orientation in bilayer MoS2 films is promoted on inclined facets in the patterned sapphire substrate, which exhibits a periodic array of charge depletion of about 1.65 × 1013 cm-2. The built-in manipulation of carrier concentrations could be a potential candidate to lateral and large-area electronics based on 2D materials.

5.
Entropy (Basel) ; 21(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33266731

RESUMO

Nowadays refractory high-entropy alloys (RHEAs) are regarded as great candidates for the replacement of superalloys at high temperature. To design a RHEA, one must understand the pros and cons of every refractory element. However, the elemental effect on mechanical properties remains unclear. In this study, the subtraction method was applied on equiatomic HfMoNbTaTiZr alloys to discover the role of each element, and, thus, HfMoNbTaTiZr, HfNbTaTiZr, HfMoTaTiZr, HfMoNbTiZr, HfMoNbTaZr, and HfMoNbTaTi were fabricated and analyzed. The microstructure and mechanical properties of each alloy at the as-cast state were examined. The solid solution phase formation rule and the solution strengthening effect are also discussed. Finally, the mechanism of how Mo, Nb, Ta, Ti, and Zr affect the HfMoNbTaTiZr alloys was established after comparing the properties of these alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA