Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(5): e2301061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098297

RESUMO

This study reports the first attempt to characterize the quality, defects, and strain of as-grown monolayer transition metal dichalcogenide (TMDC)-based 2D materials through exciton anisotropy. A standard ellipsometric parameter (Ψ) to observe anisotropic exciton behavior in monolayer 2D materials is used. According to the strong exciton effect from phonon-electron coupling processes, the change in the exciton in the Van Hove singularity is sensitive to lattice distortions such as defects and strain. In comparison with Raman spectroscopy, the variations in exciton anisotropy in Ψ are more sensitive for detecting slight changes in the quality and strain of monolayer TMDC films. Moreover, the optical power requirement for TMDC characterization through exciton anisotropy in Ψ is ≈10-5 mW cm-2, which is significantly less than that of Raman spectroscopy (≈106 mW cm-2). The standard deviation of the signals varies with strain (defects) in Raman spectra and exciton anisotropies in Ψ are 0.700 (0.795) and 0.033 (0.073), indicating that exciton anisotropy is more sensitive to slight changes in the quality of monolayer TMDC films.

2.
Small ; 19(28): e2207404, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36974592

RESUMO

Surface-enhanced Raman spectroscopy (SERS)-based biosensors have attracted much attention for their label-free detection, ultrahigh sensitivity, and unique molecular fingerprinting. In this study, a wafer-scale, ultrasensitive, highly uniform, paper-based, portable SERS detection platform featuring abundant and dense gold nanopearls with narrow gap distances, are prepared and deposited directly onto ultralow-surface-energy fluorosilane-modified cellulose fibers through simple thermal evaporation by delicately manipulating the atom diffusion behavior. The as-designed paper-based SERS substrate exhibits an extremely high Raman enhancement factor (3.9 × 1011 ), detectability at sub-femtomolar concentrations (single-molecule level) and great signal reproductivity (relative standard deviation: 3.97%), even when operated with a portable 785-nm Raman spectrometer. This system is used for fingerprinting identification of 12 diverse analytes, including clinical medicines (cefazolin, chloramphenicol, levetiracetam, nicotine), pesticides (thiram, paraquat, carbaryl, chlorpyrifos), environmental carcinogens (benzo[a]pyrene, benzo[g,h,i]perylene), and illegal drugs (methamphetamine, mephedrone). The lowest detection concentrations reach the sub-ppb level, highlighted by a low of 16.2 ppq for nicotine. This system appears suitable for clinical applications in, for example, i) therapeutic drug monitoring for individualized medication adjustment and ii) ultra-early diagnosis for pesticide intoxication. Accordingly, such scalable, portable and ultrasensitive fibrous SERS substrates open up new opportunities for practical on-site detection in biofluid analysis, point-of-care diagnostics and precision medicine.


Assuntos
Nanopartículas Metálicas , Praguicidas , Ouro/química , Nicotina , Praguicidas/análise , Análise Espectral Raman/métodos , Tiram/análise , Nanopartículas Metálicas/química
3.
Biosens Bioelectron ; 200: 113920, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973566

RESUMO

Large-area surface-enhanced Raman spectroscopy (SERS) sensing platforms displaying ultrahigh sensitivity and signal uniformity have potentially enormous sensing applicability, but they are still challenging to prepare in a scalable manner. In this study, silver nanopaste (AgNPA) was employed to prepare a wafer-scale, ultrasensitive SERS substrate. The self-generated, high-density Ag nanocracks (NCKs) with small gaps could be created on Si wafers via a spin-coating process, and provided extremely abundant hotspots for SERS analyses with ultrahigh sensitivity-down to the level of single molecules (enhancement factor: ca. 1010; detection limit: ca. 10-18 M)-and great signal reproducibility (variation: ca. 3.6%). Moreover, the Ag NCK arrays demonstrated broad applicability and practicability for on-site detection when combined with a portable 785 Raman spectrometer. This method allowed the highly sensitive detection of a diverse range of analytes (benzo[a]pyrene, di-2-ethylhexyl phthalate, aflatoxins B1, zearalenone, ractopamine, salbutamol, sildenafil, thiram, dimethoate, and methamidophos). In particular, pesticides are used extensively in agricultural production. Unfortunately, they can affect the environment and human health as a result of acute toxicity. Therefore, the simultaneous label-free detection of three different pesticides was demonstrated. Finally, the SERS substrates are fabricated through a simple, efficient, and scalable process that offers new opportunities for mass production.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Reprodutibilidade dos Testes , Prata , Análise Espectral Raman , Tiram
4.
Adv Sci (Weinh) ; 9(1): e2102128, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716758

RESUMO

Optical inspection is a rapid and non-destructive method for characterizing the properties of two-dimensional (2D) materials. With the aid of optical inspection, in situ and scalable monitoring of the properties of 2D materials can be implemented industrially to advance the development and progress of 2D material-based devices toward mass production. This review discusses the optical inspection techniques that are available to characterize various 2D materials, including graphene, transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), group-III monochalcogenides, black phosphorus (BP), and group-IV monochalcogenides. First, the authors provide an introduction to these 2D materials and the processes commonly used for their fabrication. Then they review several of the important structural properties of 2D materials, and discuss how to characterize them using appropriate optical inspection tools. The authors also describe the challenges and opportunities faced when applying optical inspection to recently developed 2D materials, from mechanically exfoliated to wafer-scale-grown 2D materials. Most importantly, the authors summarize the techniques available for largely and precisely enhancing the optical signals from 2D materials. This comprehensive review of the current status and perspective of future trends for optical inspection of the structural properties of 2D materials will facilitate the development of next-generation 2D material-based devices.

5.
Anal Chem ; 93(9): 4299-4307, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33635644

RESUMO

The localized surface plasmon resonance of plasmonic nanoparticles (NPs) can be coupled with a noble metal substrate (S) to induce a localized augmented electric field (E-field) concentrated at the NP-S gap. Herein, we analyzed the fundamental near-field properties of metal NPs on diverse substrates numerically (using the 3D finite-difference time-domain method) and experimentally [using surface-enhanced Raman scattering (SERS)]. We systematically examined the effects of plasmonic NPs on noble metals (Ag and Au), non-noble metals (Al, Ti, Cu, Fe, and Ni), semiconductors (Si and Ge), and dielectrics (TiO2, ZnO, and SiO2) as substrates. For the AgNPs, the Al (11,664 times) and Si (3969 times) substrates produced considerable E-field enhancements, with Al in particular generating a tremendous E-field enhancement comparable in intensity to that induced by a Ag (28,224 times) substrate. Notably, we found that a superior metallic character of the substrate gave rise to easier induction of image charges within the metal substrate, resulting in a greater E-field at the NP-S gap; on the other hand, the larger the permittivity of the nonmetal substrate, the greater the ability of the substrate to store an image charge distribution, resulting in stronger coupling to the charges of localized surface plasmon resonance oscillation on the metal NP. Furthermore, we measured the SERS spectra of rhodamine 6G (a commonly used Raman spectral probe), histamine (a biogenic amine used as a food freshness indicator), creatinine (a kidney health indicator), and tert-butylbenzene [an extreme ultraviolet (EUV) lithography contaminant] on AgNP-immobilized Al and Si substrates to demonstrate the wide range of potential applications. Finally, the NP-S gap hotspots appear to be widely applicable as an ultrasensitive SERS platform (∼single-molecule level), especially when used as a powerful analytical tool for the detection of residual contaminants on versatile substrates.

6.
ACS Appl Mater Interfaces ; 11(3): 3150-3159, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30624888

RESUMO

Although the use of plasmonic nanostructures for photodetection below the band gap energy of the semiconductor has been intensively investigated recently, efficiencies of such hot electron-based devices have, unfortunately, remained low because of the inevitable energy loss of the hot electrons as they move and transfer in active antennas based on metallic nanostructures. In this work, we demonstrate the concept of high-refractive-index material-embedded trench-like (ETL) active antennas that could be used to achieve almost 100% absorbance within the ultrashallow region (approximately 10 nm) beneath the metal-semiconductor interface, which is a much smaller distance compared with the hot electrons' mean free path in the noble metal layer. Taking advantage of these ETL-based active antennas, we obtained photoresponsivities under zero bias at wavelengths of 1310 and 1550 nm of 5854 and 693 nA mW-1, respectively-values higher than most those previously reported for active antenna-based silicon (Si) photodetectors that operate at optical telecommunication wavelengths. Furthermore, the ETL antenna strategy allowed us to preserve an omnidirectional and broadband photoresponse, with a superior degree of detection linearity of R2 = 0.98889 under the light of low power density (down to 11.1 µW cm-2). The photoresponses of the ETL antenna-based device varied by less than 10% upon changing the incident angle from normal incidence to 60°. Because these ETL-based devices provide high responsivity and omnidirectional detection over a broad bandwidth, they show promising potentials for use in hot electron-based optoelectronics for many applications (e.g., Si photonics, energy harvesting, photocatalysis, and sensing devices).

7.
Nanoscale ; 10(37): 17576-17584, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-29901683

RESUMO

Fluorescent nanodiamonds (FNDs) having nitrogen-vacancy (NV) centers have drawn much attention for their biocompatibility and stable optical properties. Nevertheless, the NV centers are located in the interior of the FNDs, and it has not been possible to increase the fluorescence intensity of FNDs efficiently using previously developed enhancement methods. In this paper, we present a simple nanocavity structure that enhances the fluorescence intensity of FNDs. The designed Al/SiO2 nanocavities are stable and inexpensive, and provide a large region for efficient enhancement of fluorescence that can cover most 100 nm FNDs. By tuning the thickness of the capping SiO2 layer of the Al/SiO2 nanocavities, the distributions of both the spatial and spectral electric field intensities of the FNDs could be controlled and manipulated. In general, the FNDs were excited using a green-yellow laser; the broadband fluorescence of the FNDs comprised the emissions from neutral (NV0) and negatively charged (NV-) NV centers. To enhance the fluorescence intensity from the NV- centers of the FNDs, we designed an Al/70 nm SiO2 nanocavity to function at excitation and emission wavelengths of 633 and 710 nm, respectively, allowing the NV- centers to be excited efficiently; as a result, we achieved an enhancement in fluorescence intensity of 11.2-fold. Moreover, even when we covered 100 nm FNDs with polyglycerol (forming p-FND), the fluorescence intensities of the p-FND particles placed on the nanocavities remained greatly enhanced.

8.
Nanotechnology ; 28(46): 465202, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29053473

RESUMO

In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.

9.
Nanoscale ; 8(38): 16936-16946, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27714149

RESUMO

A simple structure, efficient color splitting, sufficient output of electrical signals, and low power consumption are the important characteristics of contemporary devices for color sensing. In this study, we developed filter-free, junctionless structures that exhibited a superior photo-thermo-electrical response under a low bias voltage and a short response time in milliseconds. Although our compact sensor had a simple single-layer trench-like aluminum (Al) structure, it could perform multiple functions, including light harvesting, color-selective absorption, photo-thermo-electrical transformation, and the ability to collect photoinduced differences in electrical signals. This device exploited near-field surface plasmon resonance and cavity effects to enhance the intensity of the electric field and the color-selective absorption, ultimately resulting in significant current signals in its structured Al film. This strategy significantly simplifies not only the components of the color sensor but also its fabrication; for example, red, green, and blue color detection devices could be prepared simultaneously through a single lithography, etching, and deposition step. With its ability to provide functional filter-free, junctionless structures, this strategy has great potential for the production of devices that operate on different kinds of substrates, thereby bridging various applications of color sensing technologies.

10.
ACS Appl Mater Interfaces ; 8(10): 6718-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26925762

RESUMO

High pixel density, efficient color splitting, a compact structure, superior quantum efficiency, and low power consumption are all important features for contemporary color-image sensors. In this study, we developed a surface plasmonics-based color-image sensor displaying a high photoelectric response, a microlens-free structure, and a zero-bias working voltage. Our compact sensor comprised only (i) a multifunctional electrode based on a single-layer structured aluminum (Al) film and (ii) an underlying silicon (Si) substrate. This approach significantly simplifies the device structure and fabrication processes; for example, the red, green, and blue color pixels can be prepared simultaneously in a single lithography step. Moreover, such Schottky-based plasmonic electrodes perform multiple functions, including color splitting, optical-to-electrical signal conversion, and photogenerated carrier collection for color-image detection. Our multifunctional, electrode-based device could also avoid the interference phenomenon that degrades the color-splitting spectra found in conventional color-image sensors. Furthermore, the device took advantage of the near-field surface plasmonic effect around the Al-Si junction to enhance the optical absorption of Si, resulting in a significant photoelectric current output even under low-light surroundings and zero bias voltage. These plasmonic Schottky-based color-image devices could convert a photocurrent directly into a photovoltage and provided sufficient voltage output for color-image detection even under a light intensity of only several femtowatts per square micrometer. Unlike conventional color image devices, using voltage as the output signal decreases the area of the periphery read-out circuit because it does not require a current-to-voltage conversion capacitor or its related circuit. Therefore, this strategy has great potential for direct integration with complementary metal-oxide-semiconductor (CMOS)-compatible circuit design, increasing the pixel density of imaging sensors developed using mature Si-based technology.

11.
Nanoscale ; 8(6): 3647-59, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26809318

RESUMO

In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.

12.
J Colloid Interface Sci ; 466: 80-90, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707775

RESUMO

In this study, we found that an astronomical liquid mirror can be prepared as a highly ultrasensitive, low-cost, highly reproducible, broadband-operational surface-enhanced Raman scattering (SERS)-active substrate. Astronomical liquid mirrors are highly specularly reflective because of their perfectly dense-packed silver nanoparticles; they possess a large number and high density of hot spots that experience a very high intensity electric field, resulting in excellent SERS performance. When using the liquid mirror-based SERS-active substrate to detect 4-aminothiophenol (4-ATP), we obtained measured analytical enhancement factors (AEFs) of up to 2.7×10(12) and detection limits as low as 10(-15) M. We also found that the same liquid mirror could exhibit superior SERS capability at several distinct wavelengths (532, 632.8, and 785 nm). The presence of hot spots everywhere in the liquid mirror provided highly repeatable Raman signals from low concentrations of analytes. In addition, the astronomical liquid mirrors could be transferred readily onto cheap, flexible, and biodegradable substrates and still retain their excellent SERS performance, suggesting that they might find widespread applicability in various (bio)chemical detection fields.


Assuntos
Compostos de Anilina/análise , Nanopartículas Metálicas/química , Prata/química , Compostos de Sulfidrila/análise , Bioquímica , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
13.
ACS Nano ; 9(12): 12045-59, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26552041

RESUMO

This paper describes a systematic investigation of the phenomenon of white-light-induced heating in silk fibroin films embedded with gold nanoparticles (Au NPs). The Au NPs functioned to develop an ultrahigh broadband absorber, allowing white light to be used as a source for photothermal generation. With an increase of the Au content in the composite films, the absorbance was enhanced significantly around the localized surface plasmon resonance (LSPR) wavelength, while non-LSPR wavelengths were also increased dramatically. The greater amount of absorbed light increased the rate of photoheating. The optimized composite film exhibited ultrahigh absorbances of approximately 95% over the spectral range from 350 to 750 nm, with moderate absorbances (>60%) at longer wavelengths (750-1000 nm). As a result, the composite film absorbed almost all of the incident light and, accordingly, converted this optical energy to local heat. Therefore, significant temperature increases (ca. 100 °C) were readily obtained when we irradiated the composite film under a light-emitting diode or halogen lamp. Moreover, such composite films displayed linear light-to-heat responses with respect to the light intensity, as well as great photothermal stability. A broadband absorptive film coated on a simple Al/Si Schottky diode displayed a linear, significant, stable photo-thermo-electronic effect in response to varying the light intensity.


Assuntos
Bombyx/química , Fibroínas/química , Ouro/química , Nanocompostos/química , Animais , Temperatura Alta , Luz , Ressonância de Plasmônio de Superfície
14.
Nanoscale ; 7(39): 16312-20, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26381707

RESUMO

Despite the efficiency of gallium nitride (GaN)-based blue light-emitting diodes (LEDs), the light extraction arising from the packaging of the phosphor remains an important issue when enhancing the performance of dichromatic white LEDs. In this study, we employed a simple, inexpensive nanoimprinting process to increase both the light extraction efficiency and color rendering of dichromatic white LEDs. We employed the rigorous coupled wave approach (RCWA) to optimize the light extraction efficiency of yellow and blue light. We found that the presence of the light extracting structures could also improve the color rendering of the dichromatic white LEDs, due to the different light extraction efficiencies of the textured structures at different wavelengths. After fabricating inverted pyramid structures on the surface of the encapsulation layer, the intensity of the blue light at 455 nm increased by 20%. When we further considered the color rendering and correlated color temperature (CCT), the enhancement of blue light was 15% and that of yellow light was 4%. Meanwhile, the light extraction of the intensity dip near 490 nm was enhanced significantly (by 25%), resulting in an increased dip-intensity of light at 490 nm relative to the intensities of the blue and yellow light. Accordingly, the color rendering index (CRI) of this dichromatic white LED increased from 69 to 73. Because it improved both the light extraction efficiency and color rendering of dichromatic white LEDs, this simple method should be very helpful for enhancing their applications in solid state illumination.

15.
Anal Chem ; 87(12): 6017-24, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26043267

RESUMO

In this Article, we present a facile approach for the preparation of ecofriendly substrates, based on common rose petals, for ultrasensitive surface-enhanced Raman scattering (SERS). The hydrophobic concentrating effect of the rose petals allows us to concentrate metal nanoparticle (NP) aggregates and analytes onto their surfaces. From a systematic investigation of the SERS performance when using upper and lower epidermises as substrates, we find that the lower epidermis, with its quasi-three-dimensional (quasi-3D) nanofold structure, is the superior biotemplate for SERS applications. The metal NPs and analytes are both closely packed in the quasi-3D structure of the lower epidermis, thereby enhancing the Raman signals dramatically within the depth of focus (DOF) of the Raman optical system. We have also found the effect of the pigment of the petals on the SERS performance. With the novel petal-based substrate, the SERS measurements reveal a detection limit for rhodamine 6G below the femtomolar regime (10(-15) M), with high reproducibility. Moreover, when we employ an upside-down drying process, the unique effect of the Wenzal state of the hydrophobic petal surface further concentrate the analytes and enhanced the SERS signals. Rose petals are green, natural materials that appear to have great potential for use in biosensors and biophotonics.


Assuntos
Nanopartículas Metálicas/análise , Rodaminas/análise , Rosa/química , Prata/análise , Limite de Detecção , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
16.
ACS Nano ; 9(5): 5093-103, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25927392

RESUMO

In this study, we combine graphene with gold oxide (AuOx), a transparent and high-work-function electrode material, to achieve a high-efficient, low-bias, large-area, flexible, transparent, broadband, and bifacial-operable photodetector. The photodetector operates through hot electrons being generated in the graphene and charge separation occurring at the AuOx-graphene heterojunction. The large-area graphene covering the AuOx electrode efficiently prevented reduction of its surface; it also acted as a square-centimeter-scale active area for light harvesting and photodetection. Our graphene/AuOx photodetector displays high responsivity under low-intensity light illumination, demonstrating picowatt sensitivity in the ultraviolet regime and nanowatt sensitivity in the infrared regime for optical telecommunication. In addition, this photodetector not only exhibited broadband (from UV to IR) high responsivity-3300 A W(-1) at 310 nm (UV), 58 A W(-1) at 500 nm (visible), and 9 A W(-1) at 1550 nm (IR)-but also required only a low applied bias (0.1 V). The hot-carrier-assisted photoresponse was excellent, especially in the short-wavelength regime. In addition, the graphene/AuOx photodetector exhibited great flexibility and stability. Moreover, such vertical heterojunction-based graphene/AuOx photodetectors should be compatible with other transparent optoelectronic devices, suggesting applications in flexible and wearable optoelectronic technologies.

17.
Nanoscale ; 7(9): 3985-96, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25567353

RESUMO

We have used a direct imprint-in-metal method that is cheap and rapid to prepare incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas from nanoparticles (NPs) and imprinted metal mirrors. By changing the angle of incidence, the nanoparticle-imprinted mirror antennas (NIMAs) exhibited broadband electromagnetic enhancement from the visible to the near-infrared (NIR) regime, making them suitable for use as surface-enhanced Raman scattering (SERS)-active substrates. Unlike other SERS-active substrates that feature various structures with different periods or morphologies, the NIMAs achieved broadband electromagnetic enhancement from single configurations. The enhancement of the electric field intensity in the NIMAs originated from coupling between the localized surface plasmon resonance of the NPs and the periodic structure-excited surface plasmon resonance (SPR) of the imprinted mirror. Moreover, the coupling wavelengths could be modulated because the SPR wavelength was readily tuned by changing the angle of the incident light. Herein, we demonstrate that such NIMAs are robust substrates for visible and NIR surface-enhanced resonance Raman scattering under multiple laser lines (532, 633, and 785 nm) of excitation. In addition, we have found that NIMAs are ultrasensitive SERS-active substrates that can detect analytes (e.g., rhodamine 6G) at concentrations as low as 10(-15) M.

18.
Nanoscale ; 7(5): 1667-77, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25369861

RESUMO

In this study, an eco-friendly and ultrasensitive paper substrate is developed for surface-enhanced Raman scattering (SERS) with performance approaching single molecule detection. By exploiting the laser-induced photothermal effect, paper fibrils with hybrid micro- and nanostructures can facilitate the formation of highly dense metal nanoparticles (NPs) after a single shot of laser illumination. Metal films deposited on the paper substrates feature discontinuous morphologies, with the fragments acting as multiple nucleation sites. Because thermal conductivity is low on the broken films and the underlying paper fibrils, the incident energy is absorbed efficiently. Moreover, the quasi-three-dimensional distribution of NPs on the SERS paper greatly enhances the SERS signals within the effective collection volume of a Raman microscope. As a result of the large number of highly effective hot spots and the condensation effect, the hydrophobic SERS paper provides SERS signals with stable and uniform reproducibility throughout the detection area. The limits of detection when using the paper substrates reach the attomolar (10(-18) M) level, thereby approaching single molecule detection.

19.
ACS Appl Mater Interfaces ; 6(22): 19866-75, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25375995

RESUMO

In this study, we demonstrated that the improvement of detection capability of cadmium sulfide (CdS) photoconductors in the ultraviolet (UV) regime is much larger than that in the visible regime, suggesting that the deep UV laser-treated CdS devices are very suitable for low-light detection in the UV regime. We determined that a nanocrystallized CdS photoconductor can behave as a picowatt-sensitive detector in the UV regime after ultra-shallow-region crystallization of the CdS film upon a single shot from a KrF laser. Photoluminescence and Raman spectra revealed that laser treatment increased the degree of crystallization of the CdS and led to the effective removal of defects in the region of a few tens nanometers beneath the surface of CdS, confirming the result by the transmission electron microscopy (TEM) images. Optical simulations suggested that UV light was almost completely absorbed in the shallow region beneath the surface of the CdS films, consistent with the observed region that underwent major crystal structure transformation. Accordingly, we noted a dramatic enhancement in responsivity of the CdS devices in the UV regime. Under a low bias voltage (1 mV), the treated CdS device provided a high responsivity of 74.7 A W(-1) and a detectivity of 1.0×10(14) Jones under illumination with a power density of 1.9 nW cm(-2). Even when the power of the UV irradiation on the device was only 3.5 pW, the device exhibited extremely high responsivity (7.3×10(5) A W(-1)) and detectivity (3.5×10(16) Jones) under a bias voltage of 1 V. Therefore, the strategy proposed in this study appears to have great potential for application in the development of CdS photoconductors for picowatt-level detection of UV light with low power consumption.

20.
Analyst ; 139(20): 5103-11, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25121142

RESUMO

In this study, we develop an ultrasensitive nanoparticle (NP)-film caliper that functions with high resolution (angstrom scale) in response to both the dimensions and refractive index of the spacer sandwiched between the NPs and the film. The anisotropy of the plasmonic gap mode in the NP-film caliper can be characterized readily using spectroscopic ellipsometry (SE) without the need for further optical modeling. To the best of our knowledge, this paper is the first to report the use of SE to study the plasmonic gap modes in NP-film calipers and to demonstrate that SE is a robust and convenient method for analyzing NP-film calipers. The high sensitivity of this system originates from the plasmonic gap mode in the NP-film caliper, induced by electromagnetic coupling between the NPs and the film. The refractometric sensitivity of this NP-film caliper reaches up to 314 nm per RIU, which is superior to those of other NP-based sensors. The NP-film caliper also provides high dimensional resolution, down to the angstrom scale. In this study, the shift in wavelength in response to the change in gap spacing is approximately 9 nm Å(-1). Taking advantage of the ultrasensitivity of this NP-film caliper, we develop a platform for discriminating among thiol-containing amino acids.


Assuntos
Técnicas de Química Analítica/instrumentação , Nanopartículas/química , Refratometria , Técnicas Biossensoriais , Cisteína/química , Análise Discriminante , Glutationa/química , Homocisteína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA