Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 43(20): 1522-1533, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532114

RESUMO

Androgen deprivation therapies (ADT) are the mainstay treatments for castration-resistant prostate cancer (CRPC). ADT suppresses the androgen receptor (AR) signaling by blocking androgen biosynthesis or inhibiting AR with antiandrogens that target AR's ligand-binding domain (LBD). However, the ADT's effect is short-lived, as the AR signaling inevitably arises again, which is frequently coupled with AR-V7 overexpression. AR-V7 is a truncated form of AR that lacks the LBD, thus being constitutively active in the absence of androgens and irresponsive to AR-LBD-targeting inhibitors. Though compelling evidence has tied AR-V7 to drug resistance in CRPC, pharmacological inhibition of AR-V7 is still an unmet need. Here, we discovered a small molecule, SC912, which binds to full-length AR as well as AR-V7 through AR N-terminal domain (AR-NTD). This pan-AR targeting relies on the amino acids 507-531 in the AR-NTD. SC912 also disrupted AR-V7 transcriptional activity, impaired AR-V7 nuclear localization and DNA binding. In the AR-V7 positive CRPC cells, SC912 suppressed proliferation, induced cell-cycle arrest, and apoptosis. In the AR-V7 expressing CRPC xenografts, SC912 attenuated tumor growth and antagonized intratumoral AR signaling. Together, these results suggested the therapeutic potential of SC912 for CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Domínios Proteicos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico
2.
ACS Appl Bio Mater ; 3(4): 2516-2521, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025302

RESUMO

In this study, we developed a simple and economical method for the green synthesis of Cu2+ sensors based on betaxanthin pigments. Aminoisophthalic acid-betaxanthin was synthesized by coupling 2-aminoisophthalic acid and betalamic acid produced from DOPA-extradiol-4,5-dioxygenase in situ and in vitro. The resulting 2-aminoterephthalic acid-betaxanthin (2-AIPA-BX) presented a satisfying fluorescence quantum yield in water and a high degree of selectivity for Cu2+ over interfering metal ions. The bioproduction process of 2-AIPA-BX was scaled up from test tubes to 1 L-flasks, indicating the robustness and reproducibility of this method. Additionally, we successfully incorporated 2-AIPA-BX into paper-based analytical devices to facilitate simple, inexpensive, and portable setup with lower sample consumption for onsite monitoring of environmental and biological samples.

3.
RSC Adv ; 10(50): 29745-29750, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35518243

RESUMO

The aromatic amino acid tyrosine is an essential precursor for the synthesis of catecholamines, including l-DOPA, tyramine, and dopamine. A number of metabolic disorders have been linked to abnormal tyrosine levels in biological fluids. In this study, we developed an enzyme cascade-triggered colorimetric reaction for the detection of tyrosine, based on the formation of yellow pigment (betalamic acid) and red fluorometric betaxanthin. Tyrosinase converts tyrosine to l-DOPA, and DOPA-dioxygenase catalyzes oxidative cleavage of l-DOPA into betalamic acid. Response is linear for tyrosine from 5 to 100 µM, and the detection limit (LOD) is 2.74 µM. The enzyme cascade reaction was applied to monitor tyrosinase activity and tyrosinase inhibition assays. Lastly, the performance of the proposed biosensor proved successful in the analysis of urine samples without the need for pre-treatment.

4.
Biochim Biophys Acta Proteins Proteom ; 1867(3): 184-193, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578861

RESUMO

To achieve a good understanding of the characteristics of a protein, it is important to study its stability and folding kinetics. Investigations of protein stability have been recently applied to drug-target identification, drug screening, and proteomic studies. The efficiency of the experiments performed to study protein stability and folding kinetics is now a crucial factor that needs to be optimized for these potential applications. However, the standard procedures used to carry out these experiments are usually complicated and time consuming. Large number of measurements is the bottleneck that limits the application of protein folding to large-scale experiments. To overcome this limitation, we developed a method denoted as "one-pot analysis" which is based on taking a single measurement from a mixture of samples rather than from every sample. We combined one-pot analysis with pulse proteolysis to determine the effects of the binding of maltose to maltose-binding protein on the protein folding properties. After carrying out a simple optimization, we demonstrated that protein stability or unfolding kinetics could be measured accurately with just one detection measurement. We then further applied the optimized conditions to cellular thermal shift assay (CETSA). Combining one-pot analysis with CETSA led to a successful determination of the effects of the binding of methotrexate to dihydrofolate reductase in HCT116 cancer cells. Our results demonstrated the applicability of one-pot analysis to energetics-based methods for studying protein folding. We expect the combination of one-pot analysis and energetics-based methods to significantly benefit studies such as drug-target identification, proteomic investigations, and drug screening.


Assuntos
Dobramento de Proteína , Estabilidade Proteica , Células HCT116 , Humanos , Cinética , Maltose/química , Proteínas Ligantes de Maltose/química , Metotrexato/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo
5.
J Exp Clin Cancer Res ; 37(1): 161, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30029680

RESUMO

BACKGROUND: Oxaliplatin belongs to the platinum-based drug family and has shown promise in treating cancer by binding to DNA to induce cytotoxicity. However, individual patients show diverse therapeutic responses toward oxaliplatin due to yet-unknown underlying mechanisms. We recently established that oxaliplatin also exert its anti-cancer activity in gastric cancer cell lines by targeting tumor-associated NADH oxidase (tNOX), attenuate NAD+ generation and reduce NAD+-dependent sirtuin 1 (SIRT1) deacetylase activity, which in turn enhances p53 acetylation and apoptosis. METHODS: In this study, differential cellular outcomes in response to oxaliplatin exposure of p53-wild-type versus p53-null HCT116 human colon cancer cells were examined. Cell growth profile was determined by cell impedance measurements and apoptosis was analyzed by flow cytometry. The engagement between oxaliplatin and tNOX protein was studied by cellular thermal shift assay. Furthermore, western blot analysis revealed that p53 was important in regulating tNOX expression in these cell lines. RESULTS: In p53-wild-type cells, we found that oxaliplatin inhibited cell growth by inducing apoptosis and concurrently down-regulating tNOX at both the transcriptional and translational levels. In p53-null cells, in contrast, oxaliplatin moderately up-regulated tNOX expression and yielded no apoptosis and much less cytotoxicity. Further experiments revealed that in p53-wild-type cells, oxaliplatin enhanced ROS generation and p53 transcriptional activation, leading to down-regulation of the transcriptional factor, POU3F2, which enhances the expression of tNOX. Moreover, the addition of a ROS scavenger reversed the p53 activation, POU3F2 down-regulation, and apoptosis induced by oxaliplatin in p53-wild-type cells. In the p53-null line, on the other hand, oxaliplatin treatment triggered less ROS generation and no p53 protein, such that POU3F2 and tNOX were not down-regulated and oxaliplatin-mediated cytotoxicity was attenuated. CONCLUSION: Our results show that oxaliplatin mediates differential cellular responses in colon cancer cells depending on their p53 status, and demonstrate that the ROS-p53 axis is important for regulating POU3F2 and its downstream target, tNOX. Notably, the depletion of tNOX sensitizes p53-null cells to both spontaneous and oxaliplatin-induced apoptosis. Our work thus clearly shows a scenario in which targeting of tNOX may be a potential strategy for cancer therapy in a p53-inactivated system.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , NADH NADPH Oxirredutases/metabolismo , Oxaliplatina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Humanos , Oxaliplatina/farmacologia , Transfecção
6.
Eur J Med Chem ; 143: 1553-1562, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29137865

RESUMO

A series of 4-aminomethyl derivatives of heliomycin 1 was prepared using the Mannich reaction. The modification significantly improved aqueous solubility of the initially poorly soluble antibiotic. Testing the antiproliferative efficacy revealed a potent activity of heliomycin as well as its new derivatives on a panel of mammalian tumor cells including drug resistant variants. In contrast to 1 the new derivatives 7a, 7l, 7p generated a high level of ROS associated with induction of apoptosis in T24 bladder cancer cells. Introduction of 4-aminomethyl moiety increased the affinity to DNA and the ability to inhibit topoisomerase 1 making 7p the most promising candidate for further preclinical evaluation. Thus, aminomethylation is the first-in-class successful transformation of the antibiotic 1 resulting in an improved water solubility of derivatives and promising properties in search of novel anticancer drug candidates.


Assuntos
Antineoplásicos/farmacologia , Compostos Policíclicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metilação , Estrutura Molecular , Compostos Policíclicos/síntese química , Compostos Policíclicos/química , Relação Estrutura-Atividade
7.
Oncotarget ; 8(9): 15338-15348, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28122359

RESUMO

Oxaliplatin belongs to the platinum-based drug family and has shown promise in cancer treatment. The major mechanism of action of platinum compounds is to form platinum-DNA adducts, leading to DNA damage and apoptosis. Accumulating evidence suggests that they might also target non-DNA molecules for their apoptotic activity. We explored the effects of oxaliplatin on a tumor-associated NADH oxidase (tNOX) in gastric cancer lines. In AGS cells, we found that the oxaliplatin-inhibited tNOX effectively attenuated the NAD+/NADH ratio and reduced the deacetylase activity of an NAD+-dependent sirtuin 1, thereby enhancing p53 acetylation and apoptosis. Similar results were also observed in tNOX-knockdown AGS cells. In the more aggressive MKN45 and TMK-1 lines, oxaliplatin did not inhibit tNOX, and induced only minimal apoptosis and cytotoxicity. However, the downregulation of either sirtuin 1 or tNOX sensitized TMK-1 cells to oxaliplatin-induced apoptosis. Moreover, tNOX-depletion in these resistant cells enhanced spontaneous apoptosis, reduced cyclin D expression and prolonged the cell cycle, resulting in diminished cancer cell growth. Together, our results demonstrate that oxaliplatin targets tNOX and SIRT1, and that the tNOX-NAD+-sirtuin 1 axis is essential for oxaliplatin-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , NAD/metabolismo , Compostos Organoplatínicos/farmacologia , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , NADH NADPH Oxirredutases/genética , Oxaliplatina , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Proteína Supressora de Tumor p53/metabolismo
8.
Molecules ; 21(7)2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367652

RESUMO

Bladder cancer is one of the most frequent cancers among males, and its poor survival rate reflects problems with aggressiveness and chemo-resistance. Recent interest has focused on the use of chemopreventatives (nontoxic natural agents that may suppress cancer progression) to induce targeted apoptosis for cancer therapy. Capsaicin, which has anti-cancer properties, is one such agent. It is known to preferentially inhibit a tumor-associated NADH oxidase (tNOX) that is preferentially expressed in cancer/transformed cells. Here, we set out to elucidate the correlation between tNOX expression and the inhibitory effects of capsaicin in human bladder cancer cells. We showed that capsaicin downregulates tNOX expression and decreases bladder cancer cell growth by enhancing apoptosis. Moreover, capsaicin was found to reduce the expression levels of several proteins involved in cell cycle progression, in association with increases in the cell doubling time and enhanced cell cycle arrest. Capsaicin was also shown to inhibit the activation of ERK, thereby reducing the phosphorylation of paxillin and FAK, which leads to decreased cell migration. Finally, our results indicate that RNA interference-mediated tNOX depletion enhances spontaneous apoptosis, prolongs cell cycle progression, and reduces cell migration and the epithelial-mesenchymal transition. We also observed a downregulation of sirtuin 1 (SIRT1) in these tNOX-knockdown cells, a deacetylase that is important in multiple cellular functions. Taken together, our results indicate that capsaicin inhibits the growth of bladder cancer cells by inhibiting tNOX and SIRT1 and thereby reducing proliferation, attenuating migration, and prolonging cell cycle progression.


Assuntos
Capsaicina/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Sirtuína 1/antagonistas & inibidores , Neoplasias da Bexiga Urinária/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADH NADPH Oxirredutases/genética , Fenótipo , Interferência de RNA , Sirtuína 1/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
9.
Molecules ; 21(6)2016 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-27271588

RESUMO

Capsaicin has been reported to preferentially inhibit the activity of tumor-associated NADH oxidase (tNOX), which belongs to a family of growth-related plasma membrane hydroquinone oxidases in cancer/transformed cells. The inhibitory effect of capsaicin on tNOX is associated with cell growth attenuation and apoptosis. However, no previous study has examined the transcriptional regulation of tNOX protein expression. Bioinformatic analysis has indicated that the tNOX promoter sequence harbors a binding motif for POU3F2, which is thought to play important roles in neuronal differentiation, melanocytes growth/differentiation and tumorigenesis. In this study, we found that capsaicin-mediated tNOX downregulation and cell migration inhibition were through POU3F2. The protein expression levels of POU3F2 and tNOX are positively correlated, and that overexpression of POU3F2 (and the corresponding upregulation of tNOX) enhanced the proliferation, migration and invasion in AGS (human gastric carcinoma) cells. In contrast, knockdown of POU3F2 downregulates tNOX, and the cancer phenotypes are affected. These findings not only shed light on the molecular mechanism of the anticancer properties of capsaicin, but also the transcription regulation of tNOX expression that may potentially explain how POU3F2 is associated with tumorigenesis.


Assuntos
Capsaicina/administração & dosagem , Carcinoma/tratamento farmacológico , Proteínas de Homeodomínio/genética , NADH NADPH Oxirredutases/biossíntese , Fatores do Domínio POU/genética , Neoplasias Gástricas/tratamento farmacológico , Carcinogênese/genética , Carcinoma/genética , Carcinoma/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Melanócitos/metabolismo , Melanócitos/patologia , NADH NADPH Oxirredutases/genética , Fatores do Domínio POU/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
10.
J Agric Food Chem ; 63(33): 7361-70, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26255724

RESUMO

Capsaicin is considered a chemopreventive agent by virtue of its selective antigrowth activity, commonly associated with apoptosis, against cancer cells. However, noncancerous cells possess relatively higher tolerance to capsaicin, although the underlying mechanism for this difference remains unclear. Hence, this study aimed to elucidate the differential effects of capsaicin on cell lines from lung tissues by addressing the signal pathway leading to two types of cell death. In MRC-5 human fetal lung cells, capsaicin augmented silent mating type information regulation 1 (SIRT1) deacetylase activity and the intracellular NAD(+)/NADH ratio, decreasing acetylation of p53 and inducing autophagy. In contrast, capsaicin decreased the intracellular NAD(+)/NADH ratio, possibly through inhibition of tumor-associated NADH oxidase (tNOX), and diminished SIRT1 expression leading to enhanced p53 acetylation and apoptosis. Moreover, SIRT1 depletion by RNA interference attenuated capsaicin-induced apoptosis in A549 cancer cells and autophagy in MRC-5 cells, suggesting a vital role for SIRT1 in capsaicin-mediated cell death. Collectively, these data not only explain the differential cytotoxicity of capsaicin but shed light on the distinct cellular responses to capsaicin in cancerous and noncancerous cell lines.


Assuntos
Apoptose/efeitos dos fármacos , Capsaicina/farmacologia , NAD/metabolismo , Sirtuína 1/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Pulmão/citologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA