Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Oncogene ; 43(21): 1631-1643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589675

RESUMO

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Assuntos
Progressão da Doença , Neoplasias de Próstata Resistentes à Castração , Isomerases de Dissulfetos de Proteínas , Trombose Venosa , Masculino , Humanos , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Linhagem Celular Tumoral , Trombose Venosa/metabolismo , Trombose Venosa/induzido quimicamente , Trombose Venosa/patologia , Trombose Venosa/genética , Trombose Venosa/etiologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Tromboplastina/metabolismo , Tromboplastina/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Mikrochim Acta ; 191(3): 160, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411791

RESUMO

Chiral phenyl aromatic compounds (CPACs) are widely used in drug development, food/cosmetic production, and other organic synthesis processes, and their different enantiomers have distinct physiological activities and application differences. A double-layer metal-organic framework composite (MOF-on-MOF) was obtained by in situ synthesis of chiral metal-organic framework (CMOM-3S) on the surface of an iron-based metal-organic framework (NH2-MIL-101(Fe)). According to our investigation, MOF-on-MOF composite was for the first time applied to the stationary phase of capillary electrochromatography (CEC), and enantioseparations of eight CPACs were accomplished. Compared with single CMOM-3S, the enantioseparation performance of the coated capillary columns based on NH2-MIL-101(Fe)@CMOM-3S was improved by 34.07 ~ 720.0%. The R-/S-mandelic acid in actual sample (apricot leaves) was detected by the newly CEC system to be 0.0118 mg mL-1 and 0.0523 mg mL-1, respectively. The spike recoveries were 96.60 ~ 104.7%, indicating its good stability and accuracy. In addition, the selective adsorption capacity of MOF-on-MOF composites was verified by adsorption experiments.

3.
J Immunol Res ; 2023: 8987049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425491

RESUMO

Background: Sepsis-induced acute lung injury is a common critical illness in intensive care units with no effective treatment is currently available. Small extracellular vesicles, secreted by mesenchymal stem cells (MSCs), derived from human-induced pluripotent stem cells (iMSC-sEV), possess striking advantages when incorporated MSCs and iPSCs, which are considered extremely promising cell-free therapeutic agents. However, no studies have yet been conducted to systemically examine the effects and underlying mechanisms of iMSC-sEV application on attenuated lung injury under sepsis conditions. Method: iMSC-sEV were intraperitoneally administered in a rat septic lung injury model induced by cecal ligation and puncture (CLP). The efficacy of iMSC-sEV was assessed by histology, immunohistochemistry, and pro-inflammatory cytokines of bronchoalveolar lavage fluid. We also evaluated the in vitro effects of iMSC-sEV on the activation of the inflammatory response in alveolar macrophages (AMs). Small RNA sequencing was utilized to detect changes in the miRNA expression profile in lipopolysaccharide (LPS)-treated AMs after iMSC-sEV administration. The effects of miR-125b-5p on the function of AMs were studied. Results: iMSC-sEV were able to attenuate pulmonary inflammation and lung injury following CLP-induced lung injury. iMSC-sEV were internalized by AMs and alleviated the release of inflammatory factors by inactivating the NF-κB signaling pathway. Moreover, miR-125b-5p showed a fold-change in LPS-treated AMs after iMSC-sEV administration and was enriched in iMSC-sEV. Mechanistically, iMSC-sEV transmitted miR-125b-5p into LPS-treated AMs to target TRAF6. Conclusion: Our findings demonstrated that iMSC-sEV treatment protects against septic lung injury and exerts anti-inflammatory effects on AMs at least partially through miR-125b-5p, suggesting that iMSC-sEV may provide a novel cell-free strategy for the treatment of septic lung injury.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , MicroRNAs , Pneumonia , Sepse , Ratos , Humanos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipopolissacarídeos/uso terapêutico , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/tratamento farmacológico , Pneumonia/etiologia , Pneumonia/terapia , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sepse/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo
4.
Mikrochim Acta ; 190(7): 279, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391671

RESUMO

A novel chiral molecularly imprinted polymer TiO2 nanoparticle was synthesized in one step for the enantioseparation of phenylalanine in coated capillary electrochromatography. To the author's knowledge, the chiral molecularly imprinted nanomaterials have still not been reported, to date. Chiral molecularly imprinted TiO2 nanomaterials (L-PHE@MIP(APTES-TEOS)@TiO2) were used as a chiral stationary phase to separate the phenylalanine enantiomers in coated capillary electrochromatography (CEC). The imprinted coating was prepared from L-phenylalanine (L-PHE) as the template, TiO2 nanoparticles (NPs) as the support substrate, 3-aminopropyltriethoxysilane (APTES) as the functional monomer, and tetraethyl silicate (TEOS) as the cross-linker. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for the characterization of the L-PHE@MIP(APTES-TEOS)@TiO2@capillary. Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) were employed for the characterization of the L-PHE@MIP(APTES-TEOS)@TiO2. The effects of the applied voltage, pH value, buffer concentration, and acetonitrile content were investigated  experimentally to determine the optimum conditions for CEC. The best resolution for  phenylalanine enantiomers by CEC reached a value of 3.48. In addition, the specific recognition effect of L-PHE@MIP(APTES-TEOS)@TiO2 on PHE enantiomers was studied by selective experiment. Finally, adsorption kinetic research, adsorption equilibrium isotherm study, and adsorption thermodynamic experiment were carried out to investigate the separation mechanism of PHE enantiomers with the L-PHE@MIP (APTES-TEOS)@TiO2@capillary, and the results were consistent with those of CEC experiments.


Assuntos
Eletrocromatografia Capilar , Nanopartículas , Polímeros Molecularmente Impressos , Espectroscopia de Infravermelho com Transformada de Fourier , Fenilalanina
5.
J Chromatogr A ; 1699: 464029, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37119710

RESUMO

A chiral metal-organic framework L-Histidine-Zeolitic imidazolate framework-67 (L-His-ZIF-67) was synthesized by the mixture of chiral organic ligand L-histidine and non-chiral organic ligand 2-methylimidazole directly, and to the author's knowledge, the chiral L-His-ZIF-67 coated capillary column we prepared has still not been reported to date in the field of capillary electrophoresis. This chiral metal-organic frameworks material was used as the chiral stationary phase for enantioseparation of drugs by open-tubular capillary electrochromatography. The separation conditions such as pH value, buffer concentration and proportion of organic modifier were optimized. Under optimal conditions, the established enantioseparation system achieved good separation effect, and the resolution of five chiral drugs: esmolol (7.93), nefopam (3.03), salbutamol (2.42), scopolamine (1.08) and sotalol (0.81). In addition, the chiral recognition mechanism of L-His-ZIF-67 was elucidated by a series of mechanism experiments, and the specific interaction force was preliminarily speculated.


Assuntos
Eletrocromatografia Capilar , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Eletrocromatografia Capilar/métodos , Estereoisomerismo , Ligantes , Histidina
6.
Am J Transl Res ; 15(2): 1271-1280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915753

RESUMO

OBJECTIVE: To investigate the effects of letrozole combined with ethinylestradiol and cyproterone acetate tablets on serum sex hormones and lipid metabolism in patients with polycystic ovary syndrome (PCOS). METHODS: Clinical data of 152 PCOS patients in the First Affiliated Hospital of Guangxi University of Chinese Medicine from May 2019 to June 2021 were collected for a retrospective analysis. Among the patients, 73 treated with ethinylestradiol and cyproterone acetate tablets alone were seen as control group (CG), and the rest 79 with letrozole combined with ethinylestradiol and cyproterone acetate tablets were seen as observation group (OG). The treatment efficacy was observed, and the adverse reactions in the course of treatment were counted. The levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), estrogen (E2), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) were compared before and after treatment. The number of mature follicles, ovulation rate and pregnancy rate were assessed. Multivariate logistic regression analysis was used to detect the independent risk factors of ineffective efficacy. RESULTS: After the treatment, the total efficacy rate of the OG was higher than that of the CG (P<0.05); moreover, the levels of TC, TG, LDL, FSH, LH and T in OG were lower while HDL and E2 were higher (all P<0.05) than those of the CG. Also, the number of mature follicles, ovulation rate and pregnancy rate were higher in OG than those in the CG (all P<0.05). There was no obvious difference in the incidence of adverse reactions between the groups (P>0.05). Higher fasting glucose, higher Ferriman-Gallway hair score, single drug treatment regimen, higher systolic blood pressure, and lower E2 before treatment were independent risk factors for ineffective treatment efficacy. CONCLUSION: Letrozole combined with ethinylestradiol and cyproterone acetate tablets can enhance the treatment efficiency of PCOS and improve serum sex hormones and lipid metabolism in PCOS patients.

7.
J Endovasc Ther ; : 15266028231159243, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927094

RESUMO

PURPOSE: To evaluate the safety and efficacy of Innospring® stent, a novel self-expanding interwoven nitinol stent, in treating femoropopliteal atherosclerotic lesions. METHODS: A prospective, single-center, single-arm, first-in-human study enrolled 15 patients (mean age 73.1 years; 13 men) to evaluate the safety and efficacy of the Innospring® stent monitored by core laboratories. The inclusion criteria were claudication or ischemic rest pain, de novo lesions or nonstented restenosis, >70% stenosis, lesion length <20 cm, and a reference vessel diameter of 4-7 mm. The primary safety endpoint was 30-day major adverse events. The primary efficacy end point was stent patency at 12 months. Follow-up evaluations were conducted at 30 days, 6 months, and 12 months. RESULTS: The lesion length was 6.1 ± 3.5 mm. Fourteen (93.3%) patients had lesions of the superficial femoral artery and 3 (20.0%) patients had lesions of the popliteal artery. Nine (60.0%) patients had moderate-to-severe calcified lesion. Technical and procedural success was 100%. No patients experienced major adverse events in the first 30 days. The Rutherford category showed significant and sustained improvement at 6 and 12 months. The 12-month follow-up radiographs obtained in 13 patients confirmed the absence of stent fractures in 100% of examinations. The cumulative primary stent patency rate at 6 and 12 months were 93.3% and 84.6%, respectively. CONCLUSION: Stenting of the superficial femoral and popliteal arteries using the Innospring® stent is safe and effective. This competing interwoven nitinol stent may provide superior stent integrity and fracture-resistance as well as serve areas under extreme mechanical stress. CLINICAL IMPACT: Endovascular recanalization is a widely accepted and recommended treatment for symptomatic peripheral artery diseases. The Innospring® stent is a novel self-expanding interwoven stent containing eight nitinol wires with additional radial force, fracture-resistance, and visibility under fluoroscopy. This first-in-human study using the Innospring® stent in patients with femoropopliteal occlusive disease reported that stenting of the superficial femoral and popliteal arteries using the Innospring® stent is safe and effective. This competing interwoven nitinol stent may provide an impressive stent integrity and fracture-resistance as well as serve areas under extreme mechanical stress.

8.
Front Nutr ; 10: 1094081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819673

RESUMO

Objective: Selenium (Se) is an essential trace element and may affect cervical cancer occurrence and progression. The association between selenium supplementation and acute toxic reactions and clinical outcomes in patients with locally advanced cervical cancer treated with concurrent chemoradiotherapy remains unclear. The aim of this study was to determine the safety profile of add-on Se yeast and assess the potential of Se to ameliorate the hematologic toxicity of concurrent chemoradiotherapy in patients with cervical cancer. Methods: Patients with Federation International of Gynecology and Obstetrics (FIGO) stage IIB cervical cancer who met all inclusion criteria were randomly assigned to either the experimental group or the control group. The experimental group received Se yeast tablets (100 µg Se, twice daily), while the control group received placebos (twice daily) for 5 weeks in total. All patients in both groups received standard treatment, including pelvic external irradiation, concurrent five cycles of chemotherapy, and brachytherapy. Measures included the incidence of myelosuppression, impairment of liver and kidney function, objective response rate (ORR), and blood Se concentrations before, during and after the treatment of the two groups. Results: A total of 104 eligible patients were enrolled in the experimental group (n = 50) or the control group (n = 54). The ORR in the experimental group and control group were 96 and 94%, respectively (p = 0.47). The baseline levels of blood Se before treatment in the experimental and control groups were similar (58.34 ± 17.63 µg/L and 60.21 ± 18.42 µg/L, p = 0.60), but the concentrations became significantly different after course completion between the two groups (76.16 ± 24.47 µg/L and 57.48 ± 14.92 µg/L, respectively, p < 0.01). Se dramatically decreased the incidence of grade 3 myelosuppression (48% vs. 63%, p = 0.034) compared to the control group. In the subgroup of patients with moderately well-differentiated cervical cancer, the incidence of thrombocytopenia induced by concurrent chemoradiotherapy was lower in the experimental group than in the control group (53.8% vs. 78.9%, p < 0.01). However, no difference was observed in liver and kidney injuries between the two groups. Conclusion: Supplementation with Se effectively increased blood Se levels in Se-inadequate cervical cancer patients. As an add-on to standard treatment, Se-yeast significantly decreased the hematologic toxicity of concurrent chemoradiotherapy.

9.
Int J Biol Sci ; 19(1): 347-361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594092

RESUMO

Diabetic foot ulcers (DFUs) are among the most frequent complications of diabetes with significant morbidity and mortality. Diabetes can trigger neutrophils to undergo histone citrullination by protein arginine deiminase 4 (encoded by Padi4 in mice) and release neutrophil extracellular traps (NETs). The specific mechanism of NETs-mediated wound healing impairment in diabetes remains unknown. In this study, we show neutrophils are more susceptible to NETosis in diabetic wound environments. Via in vitro experiments and in vivo models of wound healing using wide-type and Padi4 -/- mice, we demonstrate NETs can induce the activation of PAK2 via the membrane receptor TLR-9. Then PAK2 phosphorylates the intracellular protein Merlin/NF2 to inhibit the Hippo-YAP pathway. YAP binds to transcription factor SMAD2 and translocates from the cytoplasm into the nucleus to promote endothelial-to-mesenchymal transition (EndMT), which ultimately impedes angiogenesis and delays wound healing. Suppression of the Merlin/YAP/SMAD2 pathway can attenuate NET-induced EndMT. Inhibition of NETosis accelerates wound healing by reducing EndMT and promoting angiogenesis. Cumulatively, these data suggest NETosis delays diabetic wound healing by inducing EndMT via the Hippo-YAP pathway. Increased understanding of the molecular mechanism that regulates NETosis and EndMT will be of considerable value for providing cellular targets amenable to therapeutic intervention for DFUs.


Assuntos
Diabetes Mellitus , Pé Diabético , Armadilhas Extracelulares , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Neurofibromina 2/metabolismo , Via de Sinalização Hippo , Cicatrização/genética , Neutrófilos/metabolismo , Pé Diabético/metabolismo , Diabetes Mellitus/metabolismo
10.
Inflamm Res ; 72(2): 329-346, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538076

RESUMO

BACKGROUND: The present study was designed to explore the potential regulatory mechanism between mitophagy and pyroptosis during sepsis-associated acute lung injury (ALI). METHODS: In vitro or in vivo models of sepsis-associated ALI were established by administering lipopolysaccharide (LPS) or performing caecal ligation and puncture (CLP) surgery. Pyroptosis levels were detected by electron microscopy, immunofluorescence, flow cytometry, western blotting and immunohistochemistry. Dual-luciferase reporter gene assay was applied to verify the targeting relationship between miR-138-5p and NLRP3. Methylation-specific PCR and chromatin immunoprecipitation assays were used to determine methylation of the miR-138-5p promoter. Mitophagy levels were examined by transmission electron microscopy and western blotting. RESULTS: NLRP3 inflammasome silencing alleviated alveolar macrophage (AM) pyroptosis and septic lung injury. In addition, we confirmed the direct targeting relationship between miR-138-5p and NLRP3. Overexpressed miR-138-5p alleviated AM pyroptosis and the pulmonary inflammatory response. Moreover, the decreased expression of miR-138-5p was confirmed to depend on promoter methylation, while inhibition of miR-138-5p promoter methylation attenuated AM pyroptosis and pulmonary inflammation. Here, we discovered that an increased cytoplasmic mtDNA content in sepsis-induced ALI models induced the methylation of the miR-138-5p promoter, thereby decreasing miR-138-5p expression, which may activate the NLRP3 inflammasome and trigger AM pyroptosis. Mitophagy, a form of selective autophagy that clears damaged mitochondria, reduced cytoplasmic mtDNA levels. Furthermore, enhanced mitophagy might suppress miR-138-5p promoter methylation and relieve the pulmonary inflammatory response, changes that were reversed by treatment with isolated mtDNA. CONCLUSIONS: In summary, our study indicated that mitophagy induced the demethylation of the miR-138-5p promoter, which may subsequently inhibit NLRP3 inflammasome, AM pyroptosis and inflammation in sepsis-induced lung injury. These findings may provide a promising therapeutic target for sepsis-associated ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sepse , Humanos , Inflamassomos/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitofagia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Sepse/complicações , Sepse/genética , Desmetilação , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo
11.
Dysphagia ; 38(4): 1117-1127, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36273334

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) play a important role for rehabilitation in stroke. But therapeutic schedule of rTMS in dysphagia after acute stroke is still controversial. The purpose of this study was to investigate the therapeutic effect of rTMS with different frequencies on dysphagia after acute stroke. From August 2019 to December 2020, 45 patients with post-stroke dysphagia were selected as research subjects, and randomly divided into 3 groups: the high frequency stimulation on bilateral hemisphere group (High group), bilateral high frequency stimulation on the affected hemisphere and low frequency stimulation on the unaffected hemisphere group (High-low group), and sham stimulation group (Sham group). On the basis of routine swallowing training (30 min) for all patients, the high group received 5 Hz rTMS in both hemispheres, the high- low group received 5 Hz rTMS in the unaffected hemisphere, 1 Hz rTMS in the affected hemisphere, and the sham stimulation group received sham stimulation in bilateral hemisphere. All participants were assessed with dysphagia handicap index (DHI), functional oral intake scale (FOIS) and videofluoroscopic swallowing study (VFSS) before the intervention (T1), immediately after intervention (T2) and 1 month after the intervention (T3). Meanwhile, according to the results of VFSS, Rosenbek penetration aspiration scale (PAS), the moving distance of hyoid bone towards the superior side (H), and pharyngeal response time (T) were analyzed and evaluated. After intervention, all three groups showed significant improvement in post-treatment scores from baseline (P = 0.000). The results of DHI, PAS and H showed that the improvement in high group and high-low group was significantly greater than sham group (P = 0.000). The results of FOIS and T showed that the improvement of bilateral high-frequency group was significantly greater than that of high-low group and sham group (P = 0.000), and the difference lasted until 1 month after the end of treatment. Therefore, bilateral pharyngeal cortex high frequency rTMS and affected side high frequency/unaffected side low frequency rTMS can effectively improve swallowing disorder after acute stroke. However, the effect of bilateral high frequency rTMS is significantly higher than high-low in improving oral feeding function and pharyngeal response time.


Assuntos
Transtornos de Deglutição , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Deglutição/fisiologia , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/terapia , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
12.
Thromb Haemost ; 123(1): 97-107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462769

RESUMO

Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis. The mRNA expression of the synthetic biomarker Collagen Type I Alpha 1 Chain (COL1A1) gene is upregulated during the switch of VSMCs from the contractile to the synthetic phenotype. The association of noncoding circular RNAs transcribed by the COL1A1 gene with VSMC phenotype alteration and atherogenesis remains unclear. Here we reported a COL1A1 circular RNA (circCOL1A1) which is specifically expressed in VSMCs and is upregulated during phenotype alteration of VSMCs. CircCOL1A1 is also detectable in the serum or plasma. Healthy vascular tissues have a low expression of CircCOL1A1, while it is upregulated in atherosclerosis patients. Through ex vivo and in vitro assays, we found that circCOL1A1 can promote VSMC phenotype switch. Mechanistic analysis showed that circCOL1A1 may exert its function as a competing endogenous RNA of miR-30a-5p. Upregulation of circCOL1A1 ameliorates the inhibitory effect of miR-30a-5p on its target SMAD1, which leads to suppression of transforming growth factor-ß (TGF-ß) signaling. Our findings demonstrate that circCOL1A1 promotes the phenotype switch of VSMCs through the miR-30a-5p/SMAD1/TGF-ß axis and it may serve as a novel marker of atherogenesis or as a therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Aterosclerose/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , MicroRNAs/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso/patologia , Fenótipo , RNA Circular/genética , RNA Circular/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
Transl Res ; 255: 85-96, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36435329

RESUMO

The neutrophil plays an important role during abdominal aortic aneurysm (AAA) formation by undergoing histone citrullination with peptidyl arginine deiminase 4 (encoded by Padi4) and releasing neutrophil extracellular traps (NETs). However, the specific role of NETs during AAA formation is elusive. We found the levels of NET components in serum and tissues were found to be significantly associated with the clinical outcome of AAA patients. Furthermore, we reported that NETs induced the synthetic and proinflammatory smooth muscle cells (SMCs) phenotype and promoted AAA formation in a Hippo-YAP pathway-dependent manner by in vitro and in vivo experiments. Padi4 or Yap global knockout mice, exhibited significantly less synthetic and proinflammatory phenotypes of SMCs and developed AAA with lower frequency and severity compared with those of controls. Further studies indicated that the phenotypic switch of SMCs was associated with NETs-regulated enrichment status of H3K4me3 and H3K27me3 at promoters of synthetic and proinflammatory genes in SMCs. Cumulatively, these data suggest that NETs contribute to AAA formation by promoting the synthetic and proinflammatory phenotype of SMCs via inhibiting the Hippo-YAP pathway. A better understanding of the molecular mechanisms that regulate NETs and SMC phenotype is important to provide suitable cellular targets to prevent AAA.


Assuntos
Aneurisma da Aorta Abdominal , Armadilhas Extracelulares , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Fenótipo , Neutrófilos/metabolismo , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo
14.
Transl Res ; 254: 115-127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36336332

RESUMO

Diabetic foot ulcer (DFU) is among the most frequent complications of diabetes and is associated with significant morbidity and mortality. Excessive neutrophil extracellular traps (NETs) delay wound healing in diabetic patients. Therefore, interventions targeting NET release need to be developed to effectively prevent NET-based wound healing impairment. Gasdermin D (GSDMD), a pore-forming protein acts as a central executioner of inflammatory cell death and can activate inflammasomes in neutrophils to release NETs. A precise understanding of the mechanism underlying NET-mediated delay in diabetic wound healing may be valuable in identifying potential therapeutic targets to improve clinical outcomes. In this study, we reported that neutrophils were more susceptible to NETosis in diabetic wound environments of patients with DFU. By in vitro experiments and using in vivo mouse models of diabetic wound healing (wide-type, Nlrp3-/-, Casp-1-/-, and Gsdmd-/- mice), we demonstrated that NLRP3/caspase-1/GSDMD pathway on activation controls NET release by neutrophils in diabetic wound tissue. Furthermore, inhibition of GSDMD with disulfiram or genic deletion of Gsdmd abrogated NET formation, thereby accelerating diabetic wound healing. Disulfiram could inhibit NETs-mediated diabetic foot ulcer healing impairment by suppressing the NLRP3/Caspase-1/GSDMD pathway. In summary, our findings uncover a novel therapeutic role of disulfiram in inhibiting NET formation, which is of considerable value in accelerating wound healing in patients with DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Animais , Camundongos , Caspase 1/farmacologia , Dissulfiram/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cicatrização
15.
Histol Histopathol ; 38(2): 185-197, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35929525

RESUMO

BACKGROUND: Gastric cancer (GC) ranks fourth as a cause of cancer-induced mortality worldwide. Recently, some studies have demonstrated that circular RNAs (circRNAs) play vital roles in human cancers, including GC. METHODS: The expression levels of circ_0000467, microRNA-622 (miR-622), and Rho-associated coiled-coil-containing protein kinase2 (ROCK2) were determined by RT-qPCR assay. The protein expression was quantified by western blot assay. The interaction relationship between miR-622 and circ_0000467 or ROCK2 was confirmed by dual-luciferase reporter assay and RIP assay. The biological behaviors of GC cells including proliferation, apoptosis, migration, and invasion were determined by EdU assay, colony-forming assay, flow cytometry, and transwell assay. The effects of circ_0000467 silencing in vivo were assessed by a xenograft experiment in nude mice. RESULTS: MiR-622 was downregulated and ROCK2 was upregulated in GC tissues and cells. Loss-of-function experiment revealed that overexpression of miR-622 decreased proliferation, migration, and invasion while it increased apoptosis in GC cells. Furthermore, ROCK2 was a functional target of miR-622, and upregulation of ROCK2 abolished miR-622-induced effects on GC cells. What's more, circ_0000467 was upregulated in GC, and inhibition of miR-622 reversed silencing of circ_0000467-caused effects on GC cells, suggesting that miR-622 was a target of circ_0000467. The suppression of circ_0000467 was able to slow the tumor growth in vivo. CONCLUSION: Mechanistically, circ_0000467 functioned as an oncogenic regulator in GC by specifically binding to miR-622 to upregulate ROCK2, which might be novel diagnostic markers for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Camundongos , Humanos , Camundongos Nus , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Quinases Associadas a rho
16.
Front Bioeng Biotechnol ; 10: 1023032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324887

RESUMO

Titanium (Ti) implants have been widely used for the treatment of tooth loss due to their excellent biocompatibility and mechanical properties. However, modifying the biological properties of these implants to increase osteointegration remains a research challenge. Additionally, the continuous release of various metal ions in the oral microenvironment due to fluid corrosion can also lead to implant failure. Therefore, simultaneously improving the bioactivity and corrosion resistance of Ti-based materials is an urgent need. In recent decades, micro-arc oxidation (MAO) has been proposed as a surface modification technology to form a surface protective oxide layer and improve the comprehensive properties of Ti. The present study doped nano silicon nitride (Si3N4) particles into the Ti surface by MAO treatment to improve its corrosion resistance and provide excellent osteoinduction by enhancing alkaline phosphatase activity and osteogenic-related gene expression. In addition, due to the presence of silicon, the Si3N4-doped materials showed excellent angiogenesis properties, including the promotion of cell migration and tubule formation, which play essential roles in early recovery after implantation.

17.
Comput Intell Neurosci ; 2022: 8139813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131905

RESUMO

Range query is the hot topic of the privacy-preserving data publishing. To preserve privacy, the large range query means more accumulate noise will be injected into the input data. This study presents a research on differential privacy for range query via Haar wavelet transform and Gaussian mechanism. First, the noise injected into the input data via Laplace mechanism is analyzed, and we conclude that it is difficult to judge the level of privacy protection based on the Haar wavelet transform and Laplace mechanism for range query because the sum of independent random Laplace variables is not a variable of a Laplace distribution. Second, the method of injecting noise into Haar wavelet coefficients via Gaussian mechanism is proposed in this study. Finally, the maximum variance for any range query under the framework of Haar wavelet transform and Gaussian mechanism is given. The analysis shows that using Haar wavelet transform and Gaussian mechanism, we can preserve the differential privacy for each input data and any range query, and the variance of noise is far less than that just using the Gaussian mechanism. In an experimental study on the dataset age extracted from IPUM's census data of the United States, we confirm that the proposed mechanism has much smaller maximum variance of noises than the Gaussian mechanism for range-count queries.


Assuntos
Privacidade , Análise de Ondaletas , Algoritmos , Distribuição Normal
18.
Front Immunol ; 13: 952164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967343

RESUMO

Vascular intimal hyperplasia (VIH) is an important stage of atherosclerosis (AS), in which macrophages not only play a critical role in local inflammation, but also transform into foam cells to participate into plaque formation, where they appear to be heterogeneous. Recently, it was shown that CD11c+ macrophages were more associated with active plaque progression. However, the molecular regulation of phenotypic changes of plaque macrophages during VIH has not been clarified and thus addressed in the current study. Since CD11c- cells were M2a-polarized anti-inflammatory macrophages, while CD11c+ cells were M1/M2b-polarized pro-inflammatory macrophages, we used bioinformatics tools to analyze the CD11c+ versus CD11c- plaque macrophages, aiming to detect the differential genes associated with M1/M2 macrophage polarization. We obtained 122 differential genes that were significantly altered in CD11c+ versus CD11c- plaque macrophages, regardless of CD11b expression. Next, hub genes were predicted in these 122 genes, from which we detected 3 candidates, interleukin 6 (Il6), Decorin (Dcn) and Tissue inhibitor matrix metalloproteinase 1 (Timp1). The effects of these 3 genes on CD11c expression as well as on the macrophage polarization were assessed in vitro, showing that only expression of Il6, but not expression of Dcn or Timp1, induced M1/M2b-like polarization in M2a macrophages. Moreover, only suppression of Il6, but not suppression of either of Dcn or Timp1, induced M2a-like polarization in M1/M2b macrophages. Furthermore, pharmaceutical suppression of Il6 attenuated VIH formation and progression of AS in a mouse model that co-applied apolipoprotein E-knockout and high-fat diet. Together, our data suggest that formation of VIH can be controlled through modulating macrophage polarization, as a promising therapeutic approach for prevent AS.


Assuntos
Aterosclerose , Interleucina-6 , Ativação de Macrófagos , Macrófagos , Placa Aterosclerótica , Túnica Íntima , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Hiperplasia/genética , Hiperplasia/imunologia , Hiperplasia/patologia , Interleucina-6/genética , Interleucina-6/imunologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Placa Aterosclerótica/genética , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Túnica Íntima/imunologia , Túnica Íntima/patologia
19.
Aging (Albany NY) ; 13(14): 18223-18237, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321364

RESUMO

Radiotherapy plays an essential role in the treatment of non-small-cell lung cancer (NSCLC). However, cancer cells' resistance to ionizing radiation (IR) is the primary reason for radiotherapy failure leading to tumor relapse and metastasis. DNA double-strand breaks (DSB) repair after IR is the primary mechanism of radiotherapy resistance. In this study, we investigated the effects of autophagy-inducing agent, Rapamycin (RAPA), combined with the histone deacetylase inhibitor (HDACi), Suberoylanilide Hydroxamic Acid (SAHA), on the radiosensitivity of A549 and SK-MES-1 cells, and examined the combination effects on DNA damage repair, and determined the level of autophagy and acetylation in A549 cells. We also investigated the combination treatment effect on the growth of A549 xenografts after radiotherapy, and the level of DNA damage, autophagy, and acetylation. Our results showed that RAPA combined with SAHA significantly increased the inhibitory effect of radiotherapy compared with the single treatment group. The combined treatment increased the expression of DNA damage protein γ-H2AX and decreased DNA damage repair protein expression. RAPA combined with SAHA was induced mainly by regulating acetylation levels and autophagy. The effect of combined treatment to increase radiotherapy sensitivity will be weakened by inhibiting the level of autophagy. Besides, the combined treatment also showed a significantly inhibited tumor growth in the A549 xenograft model. In conclusion, these results identify a potential therapeutic strategy of RAPA combined with SAHA as a radiosensitizer to decreased DSB repair and enhanced DNA damage by inducing acetylation levels and autophagy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Pulmonares/patologia , Tolerância a Radiação/efeitos dos fármacos , Sirolimo/farmacologia , Vorinostat/farmacologia , Células A549 , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Quimioterapia Combinada , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Front Cell Infect Microbiol ; 11: 646546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041043

RESUMO

Acute lung injury (ALI) induced by sepsis is characterized by disruption of the epithelial barrier and activation of alveolar macrophages (AMs), which leads to uncontrolled pulmonary inflammation. However, effective treatments for ALI are unavailable. The exact mechanism by which the initial mediator of alveolar epithelial cells (AECs) induces inflammation remains elusive. Here we investigated the roles of AEC-derived exosomes in AM activation and sepsis-induced ALI in vivo and in vitro. Cecal ligation and puncture (CLP) was utilized to establish septic lung injury model in rats. The effect of exosomal inhibition by intratracheal GW4869 administration on lung injury was investigated. To assess the effects of AEC-derived exosomes on ALI, we treated the rat alveolar epithelial cell line RLE-6TN with LPS to induce cell damage. Exosomes from conditioned medium of LPS-treated AECs (LPS-Exos) were isolated by ultracentrifugation. The miRNAs in LPS-Exos were screened by miRNA expression profile analysis. The effects of miR-92a-3p on the function of AMs were studied. We found that intratracheal GW4869 administration ameliorated lung injury following CLP-induced ALI. LPS-Exos were taken up by AMs and activated these cells. Consistently, administration of LPS-Exos in rats significantly aggravated pulmonary inflammation and alveolar permeability. Moreover, miR-92a-3p was enriched in LPS-Exos and could be delivered to AMs. Inhibition of miR-92a-3p in AECs diminished the proinflammatory effects of LPS-Exos in vivo and in vitro. Mechanistically, miR-92a-3p activates AMs along with pulmonary inflammation. This process results in activation of the NF-κB pathway and downregulation of PTEN expression, which was confirmed by a luciferase reporter assay. In conclusion, AEC-derived exosomes activate AMs and induce pulmonary inflammation mediated by miR-92a-3p in ALI. The present findings revealed a previously unidentified role of exosomal miR-92a-3p in mediating the crosstalk between injured AEC and AMs. miR-92a-3p in AEC exosomes might represent a novel diagnostic biomarker for ALI, which may lead to a new therapeutic approach.


Assuntos
Lesão Pulmonar Aguda , Exossomos , MicroRNAs , Sepse , Células Epiteliais Alveolares , Animais , Ativação de Macrófagos , Macrófagos Alveolares , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA