Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Int J Biol Sci ; 20(6): 1978-1991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617536

RESUMO

Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.


Assuntos
Neoplasias Colorretais , Mutações Sintéticas Letais , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Fosforilação , Citoplasma , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , PTEN Fosfo-Hidrolase/genética
2.
Adv Sci (Weinh) ; : e2308021, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561969

RESUMO

The severe Zn-dendrite growth and insufficient carbon-based cathode performance are two critical issues that hinder the practical applications of flexible Zn-ion micro-ssupercapacitors (FZCs). Herein, a self-adaptive electrode design concept of the synchronous improvement on both the cathode and anode is proposed to enhance the overall performance of FZCs. Polypyrrole doped with anti-expansion graphene oxide and acrylamide (PPy/GO-AM) on the cathode side can exhibit remarkable electrochemical performance, including decent capacitance and cycling stability, as well as exceptional mechanical properties. Meanwhile, a robust protective polymeric layer containing reduced graphene oxide and polyacrylamide is self-assembled onto the Zn surface (rGO/PAM@Zn) at the anode side, by which the "tip effect" of Zn small protuberance can be effectively alleviated, the Zn-ion distribution homogenized, and dendrite growth restricted. Benefiting from these advantages, the FZCs deliver an excellent specific capacitance of 125 mF cm-2 (125 F cm-3) at 1 mA cm-2, along with a maximum energy density of 44.4 µWh cm-2, and outstanding long-term durability with 90.3% capacitance remained after 5000 cycles. This conformal electrode design strategy is believed to enlighten the practical design of high-performance in-plane flexible Zn-based electrochemical energy storage devices (EESDs) by simultaneously tackling the challenges faced by Zn anodes and capacitance-type cathodes.

3.
Int J Biol Macromol ; 269(Pt 1): 131848, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688336

RESUMO

The facile modification of cotton fabrics for excellent self-cleaning, oil-water separation, and antibacterial activity is of great interest for multifunctional requirements. Herein, a durable, robust, fluorine-free multifunctional cotton fabric was fabricated via in-situ growing zeolitic imidazolate framework-67 (ZIF-67) on the cotton surface, followed by depositing hydrophobic SiO2 (H-SiO2) nanoparticles synthesized via an improved Stöber reaction. Meanwhile, the abundant hydroxyls of the cotton fabrics provided the necessary ion interaction sites for the uniform deposition of micro/nanomaterials, confirmed by the visualized Raman imaging technology. The resultant H-SiO2/ZIF-67@cotton fabric exhibited superhydrophobicity with a water contact angle of 159° and versatile self-cleaning, antifouling, oil-water separation, as well as prominent antibacterial activity against S. aureus and E. coli. At the same time, the superhydrophobic cotton fabric possessed excellent durability and stability against harsh environments, including abrasion, washing, acid, base, salt, and organic solvents. This facile technique can be applied for large-scale production of multifunctional superhydrophobic cotton fabrics due to its easy operation, low cost, and environmental friendliness.

4.
Sci Rep ; 14(1): 6702, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509102

RESUMO

DNA damage response (DDR) pathways are responsible for repairing endogenous or exogenous DNA damage to maintain the stability of the cellular genome, including homologous recombination repair (HRR) pathway, mismatch repair (MMR) pathway, etc. In ovarian cancer, current studies are focused on HRR genes, especially BRCA1/2, and the results show regional and population differences. To characterize germline mutations in DDR genes in ovarian cancer in Southwest China, 432 unselected ovarian cancer patients underwent multi-gene panel testing from October 2016 to October 2020. Overall, deleterious germline mutations in DDR genes were detected in 346 patients (80.1%), and in BRCA1/2 were detected in 126 patients (29.2%). The prevalence of deleterious germline mutations in BRCA2 is higher than in other studies (patients are mainly from Eastern China), and so is the mismatch repair genes. We identified three novel BRCA1/2 mutations, two of which probably deleterious (BRCA1 p.K1622* and BRCA2 p.L2987P). Furthermore, we pointed out that deleterious mutations of FNACD2 and RECQL4 are potential ovarian cancer susceptibility genes and may predispose carriers to ovarian cancer. In conclusion, our study highlights the necessity of comprehensive germline mutation detection of DNA damage response genes in ovarian cancer patients, which is conducive to patient management and genetic counseling.


Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Mutação em Linhagem Germinativa , Reparo do DNA/genética , Células Germinativas , Predisposição Genética para Doença
6.
Mol Nutr Food Res ; 68(7): e2300469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522025

RESUMO

SCOPE: 3,5-Dihydroxy-4-methoxybenzyl alcohol (DHMBA) is found in oyster extracts in recent years and is reported to have antioxidant activity. Although it has been reported to be protective in various models of oxidative stress, the therapeutic effect of DHMBA on neurological damage caused by aging remains to be demonstrated. METHODS AND RESULTS: The present study investigates the potential functions of DHMBA in brain of old C57BL/6J mice and aging cell model. Administration of DHMBA improves working memory, reduces anxiety behavior, decreases the expression levels of cell cycle proteins, cycin-dependent kinase inhibitor 1(P21) and peptidase inhibitor 16(P16)  and inhibits neuronal loss in old mice. The data obtained from the aging cell model are consistent with those from the old mice. The interaction between DHMBA and Kelch-like ECH-associated protein 1 (Keap1) is predicted by molecular docking assay, and then it is verified by co-immunopricipitation (CoIP) that factor red lineage 2-related factor 2 (Nrf2)-Keap1 protein-protein interaction is inhibited by DHMBA. Protein levels of Nrf2 and its target genes, such as glutathione peroxidase 4(GPX4) and heme oxygenase 1 (HO-1), are detected in old mice and aging cell model. CONCLUSION: This study provides new evidence that explores the antioxidant mechanism of DHMBA and implies a potential role of DHMBA on antiaging in brain.


Assuntos
Álcoois Benzílicos , Crassostrea , Camundongos , Animais , Crassostrea/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Etanol/farmacologia , Encéfalo/metabolismo
7.
Toxics ; 12(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38393249

RESUMO

In this study, 245 representative samples of aquatic products were selected from local markets in Shenzhen by stochastic sampling. The samples comprised eight species and fell into three aquatic product categories: fish, crustaceans, and bivalves. A total of eight BPs were determined by liquid chromatography coupled with mass spectrometry, namely, bisphenol A (BPA), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol S (BPS), bisphenol P (BPP), bisphenol Z (BPZ), and bisphenol F (BPF). All BPs were detected in aquatic products, except for BPAF, indicating pervasive contamination by BPs in aquatic products. BPS demonstrated the highest detection rate both before and after enzymatic hydrolysis, whereas BPAP exhibited the lowest detection rate before enzymatic hydrolysis and BPB displayed the lowest detection rate after enzymatic hydrolysis. The concentration difference before and after enzymatic hydrolysis proved to be statistically significant. Moreover, 49-96% of BPs in aquatic products were found in the combined state, underscoring the essentiality of conducting detections on aquatic product samples following enzymatic hydrolysis. While the health risks associated with ingesting BPs residues through aquatic product consumption were found to be minimal for residents at risk of exposure, the results suggest the necessity for more stringent regulations governing the consumption of aquatic products.

8.
Front Oncol ; 14: 1336616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371630

RESUMO

Purpose: This study evaluated the efficacy and safety in a real-world population of epithelial ovarian cancer (EOC) treated with poly (ADP-ribose) polymerase inhibitor (PARPi) as first-line maintenance therapy in the largest gynecologic oncology center in Western China. Methods: This study included patients newly diagnosed EOC who received PARPi as first-line maintenance therapy in West China Second University Hospital from August 1, 2018 to September 31, 2022. The primary endpoints were progression-free survival (PFS) and safety evaluated by Common Terminology Criteria for Adverse Events Version 5.0(CTCAE 5.0). The secondary endpoints were overall survival (OS) and prognostic factors influencing the PFS of patients in real world. Results: Among the eligible 164 patients, 104 patients received olaparib and 60 patients received niraparib. 100 patients (61.0%) had mutations in breast cancer susceptibility gene (BRCA). 87 patients (53.0%) received primary debulking surgery (PDS) while 77 patients (47.0%) received interval debulking surgery (IDS). 94 patients (94/164, 57.3%) achieved R0 and 39 patients (23.8%) achieved R1 after PDS/IDS. 112 (68.3%) achieved complete response (CR) after first-line chemotherapy, while 49 (29.9%) achieved partial response (PR). The median follow-up time was 17.0 months (95% CI 15.6-18.4), and the median PFS has not been reached yet. Multivariate analysis demonstrated that BRCA mutations and CR/PR after platinum-based chemotherapy were independent factors associated with prolonged PFS. Hematologic toxicity was the most common grade≥3 AE. There were no incidence of myelodysplastic syndromes/acute myelogenous leukemia (MDS/AML). Conclusion: Focusing on PARPi as first-line maintenance therapy for patients with EOC, this study represented the largest single-center real-world study in China to date. Two independent factors were identified to prolong the PFS of patients: BRCA mutated type and CR/PR after primary treatment, which should be further confirmed with long-term follow-up and large sample sizes.

9.
Proc Natl Acad Sci U S A ; 121(6): e2304619121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289962

RESUMO

Resistance to neoadjuvant chemotherapy leads to poor prognosis of locally advanced rectal cancer (LARC), representing an unmet clinical need that demands further exploration of therapeutic strategies to improve clinical outcomes. Here, we identified a noncanonical role of RB1 for modulating chromatin activity that contributes to oxaliplatin resistance in colorectal cancer (CRC). We demonstrate that oxaliplatin induces RB1 phosphorylation, which is associated with the resistance to neoadjuvant oxaliplatin-based chemotherapy in LARC. Inhibition of RB1 phosphorylation by CDK4/6 inhibitor results in vulnerability to oxaliplatin in both intrinsic and acquired chemoresistant CRC. Mechanistically, we show that RB1 modulates chromatin activity through the TEAD4/HDAC1 complex to epigenetically suppress the expression of DNA repair genes. Antagonizing RB1 phosphorylation through CDK4/6 inhibition enforces RB1/TEAD4/HDAC1 repressor activity, leading to DNA repair defects, thus sensitizing oxaliplatin treatment in LARC. Our study identifies a RB1 function in regulating chromatin activity through TEAD4/HDAC1. It also provides the combination of CDK4/6 inhibitor with oxaliplatin as a potential synthetic lethality strategy to mitigate oxaliplatin resistance in LARC, whereby phosphorylated RB1/TEAD4 can serve as potential biomarkers to guide the patient stratification.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Oxaliplatina/farmacologia , Terapia Neoadjuvante/métodos , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Quimiorradioterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cromatina , Resultado do Tratamento , Fatores de Transcrição de Domínio TEA , Ubiquitina-Proteína Ligases , Proteínas de Ligação a Retinoblastoma
10.
Cell Death Dis ; 15(1): 34, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212325

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Mutação/genética , Transdução de Sinais , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Microambiente Tumoral
11.
Environ Pollut ; 342: 123114, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081376

RESUMO

T-2 toxin, a highly toxic type A monotrichothecene mycotoxin, has been found in many different types of cereals and is considered to be one of the most dangerous naturally occurring forms of food contamination. Globally, consuming grain-based food tainted with T-2 toxin poses significant risks to animal and human health. Prior research has indicated that the presence of T-2 toxin may lead to the demise of chondrocytes and the deterioration of the extracellular matrix of cartilage in degenerative bone and joint conditions, such as Kashin-Beck disease. However, the mechanisms by which T-2 toxin exerts its biological toxicity on the degradation of the extracellular matrix in cartilage are not well understood. In the current study, we found original results that demonstrate an upregulation of Toll-Like Receptors (TLR-2, TLR-4) and ESE-1 expression levels in the articular cartilage of a rat model subjected to T-2 toxin exposure. Furthermore, it was revealed that the exposure to T-2 toxin resulted in an increase in the expression of TLR-2, TLR-4, and ESE-1 in human C28/I2 chondrocytes. The findings of this study indicate that the increased expression of TLR-2, TLR-4, and ESE-1 may contribute to the development of degenerative osteoarthritic disease caused by T-2 toxin. Consistent with our hypotheses, we discovered that T-2 toxin increased the expression of MMP-1 and MMP-13 in human C28/I2 chondrocytes. We used a luciferase reporter gene assay to measure the activity of the ESE-1 promoter and transfected cells with plasmids encoding TLR-2 and TLR-4 to investigate their effects on this activity. TLR-2 and TLR-4 can activate ESE-1 transcriptional gene expression, and this expression is mediated through the NF-κB pathway, additional evidence is provided for the participation of the TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. Together, the findings indicated that the TLRs/NF-κB/ESE-1 signaling pathway played an essential part in T-2 toxin-induced cartilage matrix degradation.


Assuntos
Cartilagem Articular , Toxina T-2 , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Toxina T-2/toxicidade , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Cartilagem Articular/metabolismo
12.
Hum Exp Toxicol ; 42: 9603271231219480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059300

RESUMO

This study evaluated the effect of fibroblast growth factor receptor 3 (FGFR3) on damaged hypertrophic chondrocytes of Kashin-Beck disease (KBD). Immunohistochemical staining was used to evaluate FGFR3 expression in growth plates from KBD rat models and engineered cartilage. In vitro study, hypertrophic chondrocytes were pretreated by FGFR3 binding inhibitor (BGJ398) for 24 h before incubation at different T-2 toxin concentrations. Differentiation -related genes (Runx2, Sox9, and Col Ⅹ) and ECM degradation -related genes (MMP-13, Col Ⅱ) in the hypertrophic chondrocytes were analyzed using RT-PCR, and the corresponding proteins were analyzed using western blotting. Hypertrophic chondrocytes death was detected by the Annexin V/PI double staining assay. The integrated optical density of FGFR3 staining was increased in knee cartilage of rats and engineered cartilage treated with T-2 toxin. Both protein and mRNA levels of Runx2, Sox9, Col Ⅱ, and Col Ⅹ were decreased in a dose-dependent manner when exposed to the T-2 toxin and significantly upregulated by 1 µM BGJ398. The expression of MMP-1, MMP-9, and MMP-13 increased in a dose-dependent manner when exposed to T-2 toxin and significantly reduced by 1 µM BGJ398. 1 µM BGJ398 could prevent early apoptosis and necrosis induced by the T-2 toxin. Inhibiting the FGFR3 signal could alleviate extracellular matrix degradation, abnormal chondrocytes differentiation, and excessive cell death in T-2 toxin-induced hypertrophic chondrocytes.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , Osteoartrite , Toxina T-2 , Ratos , Animais , Toxina T-2/toxicidade , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/farmacologia , Osteoartrite/metabolismo , Doença de Kashin-Bek/induzido quimicamente
13.
Gen Psychiatr ; 36(6): e101282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155845

RESUMO

Increasing observational and experimental trial data have shown that mental stress can lead to an increase in adverse clinical cardiovascular events. Mental stress affects the heart by inducing ischaemia and precipitating myocardial infarction (MI) or direct myocardial injury. Mental stress leads to systemic inflammation. Inflammation is known to cause rapid atheromatous plaque progression, instability and thrombosis-the classic type 1 MI. Inflammation can also lead to type 2 MI or myocarditis and injury. The published data linking systemic inflammation, mental stress and cardiovascular disease will be reviewed to establish the linkage between mind and heart, thereby highlighting the importance of holistically managing the patient, not only addressing separate organ systems. Finally, recent trial evidence showing the value of anti-inflammatory drugs in cardiovascular and mental conditions will be briefly considered.

14.
IEEE Trans Image Process ; 32: 6061-6074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917516

RESUMO

Behavior sequences are generated by a series of spatio-temporal interactions and have a high-dimensional nonlinear manifold structure. Therefore, it is difficult to learn 3D behavior representations without relying on supervised signals. To this end, self-supervised learning methods can be used to explore the rich information contained in the data itself. Context-context contrastive self-supervised methods construct the manifold embedded in Euclidean space by learning the distance relationship between data, and find the geometric distribution of data. However, traditional Euclidean space is difficult to express context joint features. In order to obtain an effective global representation from the relationship between data under unlabeled conditions, this paper adopts contrastive learning to compare global feature, and proposes a self-supervised learning method based on hyperbolic embedding to mine the nonlinear relationship of behavior trajectories. This method adopts the framework of discarding negative samples, which overcomes the shortcomings of the paradigm based on positive and negative samples that pull similar data away in the feature space. Meanwhile, the output of the network is embedded in a hyperbolic space, and a multi-layer perceptron is added to convert the entire module into a homotopic mapping by using the geometric properties of operations in the hyperbolic space, so as to obtain homotopy invariant knowledge. The proposed method combines the geometric properties of hyperbolic manifolds and the equivariance of homotopy groups to promote better supervised signals for the network, which improves the performance of unsupervised learning.

15.
Gen Psychiatr ; 36(4): e100946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655114

RESUMO

Background: Non-suicidal self-injury (NSSI) is a frequent and prominent phenomenon in major depressive disorder (MDD). Even though its prevalence and risk factors are relatively well understood, the potential mechanisms of NSSI in MDD remain elusive. Aims: To review present evidence related to the potential mechanisms of NSSI in MDD. Methods: According to Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines, articles for this systematic review were searched on Medline (through PubMed), Embase (through Elsevier), PsycINFO (through OVID) and Web of Science databases for English articles, as well as China National Knowledge Infrastructure (CNKI), SinoMed, Wanfang Data, and the Chongqing VIP Chinese Science and Technology Periodical (VIP) Databases for Chinese articles published from the date of inception to 2 August 2022. Two researchers (BW, HZ) independently screened studies based on inclusion and exclusion criteria and assessed their quality. Results: A total of 25 157 studies were searched. Only 25 of them were ultimately included, containing 3336 subjects (1535 patients with MDD and NSSI, 1403 patients with MDD without NSSI and 398 HCs). Included studies were divided into 6 categories: psychosocial factors (11 studies), neuroimaging (8 studies), stress and hypothalamic-pituitary-adrenal (HPA) axis (2 studies), pain perception (1 study), electroencephalogram (EEG) (2 studies) and epigenetics (1 study). Conclusions: This systematic review indicates that patients with MDD and NSSI might have specific psychosocial factors, aberrant brain functions and neurochemical metabolisms, HPA axis dysfunctions, abnormal pain perceptions and epigenetic alterations.

16.
Cell Death Dis ; 14(8): 513, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563118

RESUMO

Acquired resistance to chemotherapy is one of the major causes of mortality in advanced nasopharyngeal carcinoma (NPC). However, effective strategies are limited and the underlying molecular mechanisms remain elusive. In this study, through transcriptomic profiling analysis of 23 tumor tissues, we found that NOTCH3 was aberrantly highly expressed in chemoresistance NPC patients, with NOTCH3 overexpression being positively associated with poor clinical outcome. Mechanistically, using an established NPC cellular model, we demonstrated that enhancer remodeling driven aberrant hyperactivation of NOTCH3 in chemoresistance NPC. We further showed that NOTCH3 upregulates SLUG to induce chemo-resistance of NPC cells and higher expression of SLUG have poorer prognosis. Genetic or pharmacological perturbation of NOTCH3 conferred chemosensitivity of NPC in vitro and overexpression of NOTCH3 enhanced chemoresistance of NPC in vivo. Together, these data indicated that genome-wide enhancer reprogramming activates NOTCH3 to confer chemoresistance of NPC, suggesting that targeting NOTCH3 may provide a potential therapeutic strategy to effectively treat advanced chemoresistant NPC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Sequências Reguladoras de Ácido Nucleico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor Notch3/genética , Receptor Notch3/metabolismo
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123199, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544215

RESUMO

Shewanella plays an important role in geochemical cycle, biological corrosion, bioremediation and bioenergy. The development of methods for identifying Shewanella can provide technical support for its rapid screening, in-depth research into its extracellular respiratory mechanism and its application in ecological environment remediation. As a tool for microbial classification, identification and detection, Surface-enhanced Raman scattering (SERS) has high feasibility and application potential. In this work, bio-synthesized silver nanoparticles (AgNPs) were used as SERS substrates to effectively distinguish different types of Shewanella bacteria based on the difference in bacterial extracellular electron transfer (EET) ability. AgNPs were combined with the analyzed bacteria to prepare "Bacteria-AgNPs" SERS samples, which can strongly enhance the Raman signal of the target bacteria and reliably obtain spatial information of different molecular functional groups of each bacteria. Our developed approach can effectively distinguish between non-metal reducing and metal-reducing bacteria, and can further distinguish the three subspecies of Shewanella (Shewanella oneidensis MR-1, Shewanella decolorationis S12, and Shewanella putrefaciens SP200) at the genus and species level. The Raman signal enhancement is presumably caused by the excitation of local surface plasma (LSP) and the enhancement of surrounding electric field. Therefore, our developed method can achieve interspecific and intraspecies discrimination of bacteria. The proposed method can be extended to distinguish other metal-reducing bacteria, and the novel SERS active substrates can be developed for practical applications.


Assuntos
Nanopartículas Metálicas , Shewanella , Elétrons , Nanopartículas Metálicas/química , Prata/química , Transporte de Elétrons , Análise Espectral Raman/métodos
18.
FEBS Open Bio ; 13(11): 2020-2034, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606998

RESUMO

Neuropathic pain (NP), resulting from nerve injury, alters neural plasticity in spinal cord and brain via the release of inflammatory mediators. The remodeling of store-operated calcium entry (SOCE) involves the refilling of calcium in the endoplasmic reticulum via STIM1 and Orai1 proteins and is crucial for maintaining neural plasticity and neurotransmitter release. The mechanism underlying SOCE-mediated NP remains largely unknown. In this study, we found SOCE-mediated calcium refilling was significantly higher during neuropathic pain, and the major component Orai1 was specifically co-localized with neuronal markers. Intrathecal injection of SOCE antagonist SKF96365 remarkably alleviated nerve injury- and formalin-induced pain and suppressed c-Fos expression in response to innocuous mechanical stimulation. RNA sequencing revealed that SKF96365 altered the expression of spinal transcription factors, including Fos, Junb, and Socs3, during neuropathic pain. In order to identify the genes critical for SKF96365-induced effects, we performed weighted gene co-expression network analysis (WGCNA) to identify the genes most correlated with paw withdrawal latency phenotypes. Of the 16 modules, MEsalmon module was the most highly correlated with SKF96365 induced effects. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the enriched genes of MEsalmon module were significantly related to Toll-like receptor signaling, steroid biosynthesis, and chemokine signaling, which may mediate the analgesic effect caused by SKF9636 treatment. Additionally, the SOCE antagonist YM-58483 produced similar analgesic effects in nerve injury- and formalin-induced pain. Our results suggest that manipulation of spinal SOCE signaling might be a promising target for pain relief by regulating neurotransmitter production and spinal transcription factor expression.


Assuntos
Canais de Cálcio , Neuralgia , Humanos , Canais de Cálcio/genética , Cálcio/metabolismo , Células Cultivadas , Neuralgia/tratamento farmacológico , Fatores de Transcrição/metabolismo , Formaldeído , Neurotransmissores , Analgésicos
19.
Cells ; 12(14)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37508485

RESUMO

Ferroptosis is a newly discovered iron-dependent form of regulated cell death driven by phospholipid peroxidation and associated with processes including iron overload, lipid peroxidation, and dysfunction of cellular antioxidant systems. Ferroptosis is found to be closely related to many diseases, including cancer at every stage. Epithelial-mesenchymal transition (EMT) in malignant tumors that originate from epithelia promotes cancer-cell migration, invasion, and metastasis by disrupting cell-cell and cell-cell matrix junctions, cell polarity, etc. Recent studies have shown that ferroptosis appears to share multiple initiators and overlapping pathways with EMT in cancers and identify ferroptosis as a potential predictor of various cancer grades and prognoses. Cancer metastasis involves multiple steps, including local invasion of cancer cells, intravasation, survival in circulation, arrest at a distant organ site, extravasation and adaptation to foreign tissue microenvironments, angiogenesis, and the formation of "premetastatic niche". Numerous studies have revealed that ferroptosis is closely associated with cancer metastasis. From the cellular perspective, ferroptosis has been implicated in the regulation of cancer metastasis. From the molecular perspective, the signaling pathways activated during the two events interweave. This review briefly introduces the mechanisms of ferroptosis and discusses how ferroptosis is involved in cancer progression, including EMT, cancer angiogenesis, invasion, and metastasis.


Assuntos
Ferroptose , Neoplasias , Humanos , Neoplasias/patologia , Ferro/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Peroxidação de Lipídeos , Microambiente Tumoral
20.
Toxicon ; 232: 107193, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423522

RESUMO

The growth plate cartilage is one of the most common areas that Kashin-Beck Disease attacks. However, the exact mechanism of growth plate damage remains unclear. Here, we demonstrated that Smad2 and Smad3 were closely associated with the differentiation of chondrocytes. Reduction of Smad2 and Smad3 were found both in T-2 toxin-induced human chondrocytes in vitro and in T-2 toxin-induced rat growth plate in vivo. Blunting Smad2 or Smad3 both strikingly induced human chondrocytes apoptosis, implying a plausible signaling pathway to clarify the mechanism of T-2 toxin-induced oxidative damage. Furthermore, decreased Smad2 and Smad3 were also observed in the growth plates of KBD children. Collectively, our findings clearly illustrated that T-2 toxin-induced chondrocyte apoptosis contributes to growth plate damage through Smad2 and Smad3 signaling, which refines the pathogenesis of endemic osteoarthritis and provides two potential targets for the prevention and repairment of endemic osteoarthritis.


Assuntos
Osteoartrite , Toxina T-2 , Criança , Ratos , Humanos , Animais , Condrócitos/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Lâmina de Crescimento , Apoptose , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA