Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133191, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38071775

RESUMO

Mercury (Hg) is a globally distributed toxic metal and could pose serious harm to birds, which may ultimately threaten human health through poultry consumption. However, the avian Hg metabolism remains unclear. Poultry, like chickens, are more accessible human dietary sources than wild birds and are ideal proxies to study Hg metabolism in birds. In this study, the avian Hg metabolism is carefully investigated with hens fed by Hg-spiked (both inorganic mercury IHg and methylmercury MeHg) foods. Our results demonstrate that feces and eggs are the main removal pathways of Hg from hens, rather than feathers. Eggs show particularly rapid responses towards Hg exposures, thus could be more sensitive to environmental Hg pollution than feathers, feces or internal organs (and tissues). Egg yolk (with THg peak of 55.92 ng/g on Day 6) and egg white (THg peak of 1195.03 ng/g on Day 4) react as an effective bioindicator for IHg and MeHg exposure, respectively. In 90-day-single-dose exposure, IHg is almost completely excreted, while approximately 11% of MeHg remains in internal organs. Our study provides new insight into the metabolism and lifetime of IHg and MeHg in birds, advancing the understanding of the dynamics for human exposure to Hg through poultry products.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Humanos , Animais , Feminino , Compostos de Metilmercúrio/toxicidade , Biomarcadores Ambientais , Galinhas/metabolismo , Mercúrio/análise , Monitoramento Ambiental , Ovos
2.
Ecotoxicol Environ Saf ; 265: 115509, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742573

RESUMO

Cadmium (Cd) and aniline frequently co-occur in industrial settings but have rarely been addressed as composite toxicants in terms of the overall toxicity despite extensive knowledge of the environmental impact of each individual pollutant. In this study, we attempt to assess the relation of individual and combined toxic effects of Cd and aniline using a bacterial consortium cultured from soils as a model system. Results showed that the consortial bacteria exhibited drastically stronger tolerance to stand-alone Cd and aniline in comparison to literature data acquired from single species studies. When occurring simultaneously, the joint toxicity displayed a concentration-dependent behavior that wasn't anticipated based on individual chemical tests. Specifically, additive effects manifested with Cd and aniline at their IC10s, but changed to synergistic when the concentrations increased to IC20, and finally transitioned into antagonistic at IC30s and beyond. In addition, co-occurring aniline appeared to have retarded the cellular accumulation of Cd while increasing the enzymatic activities of superoxide dismutase and catalase relative to that in Cd-alone treatments. Finally, the bacterial community experienced distinct compositional changes under solo and combined toxicities with several genera exhibiting inconsistent behavior between treatments of single and composite toxicants. Findings from this study highlight the complexity of bacterial response to composite pollutions and point to the need for more comprehensive references in risk and toxicology assessment at multi-chemical contamination sites.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/toxicidade , Bactérias , Solo , Superóxido Dismutase , Poluição Ambiental , Poluentes do Solo/análise
3.
Sci Adv ; 9(36): eadh9502, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672591

RESUMO

The Cryogenian Sturtian and Marinoan Snowball Earth glaciations bracket a nonglacial interval during which Demosponge and green-algal biomarkers first appear. To understand the relationships between environmental perturbations and early animal evolution, we measured sulfur and mercury isotopes from the Datangpo Formation from South China. Hg enrichment with positive Δ199Hg excursion suggests enhanced volcanism, potentially due to depressurization of terrestrial magma chambers during deglaciation. A thick stratigraphic interval of negative Δ33Spy indicates that the nonglacial interlude was characterized by low but rising sulfate levels. Model results reveal a mechanism to produce the Δ33S anomalies down to -0.284‰ through Rayleigh distillation. We propose that extreme temperatures and anoxia contributed to the apparent delay in green algal production in the aftermath of the Sturtian glaciation and the subsequent reoxygenation of the iron-rich and sulfate-depleted ocean paved the way for evolution of animals.

4.
Nat Commun ; 14(1): 3920, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400445

RESUMO

The Ediacaran Period (~635-539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals.


Assuntos
Sedimentos Geológicos , Água do Mar , Animais , Fósseis , Oceanos e Mares , Oxigênio/análise , Evolução Biológica
5.
Environ Sci Technol ; 57(23): 8638-8649, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37167064

RESUMO

Pollutant emissions from coal fires have caused serious concerns in major coal-producing countries. Great efforts have been devoted to suppressing them in China, notably at the notorious Wuda Coalfield in Inner Mongolia. Recent surveys revealed that while fires in this coalfield have been nearly extinguished near the surface, they persist underground. However, the impacts of Hg volatilized from underground coal fires remain unclear. Here, we measured concentrations and isotope compositions of atmospheric Hg in both gaseous and particulate phases at an urban site near the Wuda Coalfield. The atmospheric Hg displayed strong seasonality in terms of both Hg concentrations (5-7-fold higher in fall than in winter) and isotope compositions. Combining characteristic isotope compositions of potential Hg sources and air mass trajectories, we conclude that underground coal fires were still emitting large amounts of Hg into the atmosphere that have been transported to the adjacent urban area in the prevailing downwind direction. The other local anthropogenic Hg emissions were only evident in the urban atmosphere when the arriving air masses did not pass directly through the coalfield. Our study demonstrates that atmospheric Hg isotope measurement is a useful tool for detecting concealed underground coal fires.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Incêndios , Mercúrio , Mercúrio/análise , Isótopos de Mercúrio/análise , Carvão Mineral/análise , China , Poluentes Atmosféricos/análise , Monitoramento Ambiental
6.
Environ Sci Technol ; 57(17): 6888-6897, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083402

RESUMO

Reduced iron-containing clay (RIC) minerals have been documented to exhibit antibacterial activity through a synergistic action of extracellular membrane attack and intracellular oxidation of cellular components. However, the relative importance between extracellular and intracellular processes has remained elusive. Here, metal-chelating organic ligands (lactate, oxalate, citrate, and ethylene diaminetetraacetic acid (EDTA)) were amended to the bactericidal assays such that the importance of the two processes could be evaluated. Reduced nontronite (rNAu-2) was used as a model clay mineral to produce extracellular hydroxyl radical (•OH) upon oxygenation. The presence of Fe-chelating ligands increased •OH yield by 3-5 times. Consequently, bacterial cell membrane attack was enhanced, yet the antibacterial activity of RIC diminished. Additional experiments revealed that the ligands inhibited soluble metal ions from adsorption onto the bacterial cell membrane and/or penetration into the cytoplasm. Consequently, intracellular Fe concentration for the ligand-treated group was nearly 2 orders of magnitude lower than that for no-ligand control, which greatly decreased intracellular accumulation of reactive oxygen species (ROS) and increased cell survival. These results highlight that destruction of intracellular contents (proteins and DNA) is more important than oxidative degradation of membrane lipids and cell envelope proteins in causing bacterial cell death by RIC.


Assuntos
Silicatos de Alumínio , Radical Hidroxila , Argila , Minerais , Ferro , Oxirredução , Antibacterianos/farmacologia
7.
Environ Sci Technol ; 57(16): 6550-6562, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042785

RESUMO

Deep oceans receive mercury (Hg) from upper oceans, sediment diagenesis, and submarine volcanism; meanwhile, sinking particles shuttle Hg to marine sediments. Recent studies showed that Hg in the trench fauna mostly originated from monomethylmercury (MMHg) of the upper marine photosynthetic food webs. Yet, Hg sources in the deep-sea chemosynthetic food webs are still uncertain. Here, we report Hg concentrations and stable isotopic compositions of indigenous biota living at hydrothermal fields of the Indian Ocean Ridge and a cold seep of the South China Sea along with hydrothermal sulfide deposits. We find that Hg is highly enriched in hydrothermal sulfides, which correlated with varying Hg concentrations in inhabited biota. Both the hydrothermal and cold seep biota have small fractions (<10%) of Hg as MMHg and slightly positive Δ199Hg values. These Δ199Hg values are slightly higher than those in near-field sulfides but are 1 order of magnitude lower than the trench counterparts. We suggest that deep-sea chemosynthetic food webs mainly assimilate Hg from ambient seawater/sediments and hydrothermal fluids formed by percolated seawater through magmatic/mantle rocks. The MMHg transfer from photosynthetic to chemosynthetic food webs is likely limited. The contrasting Hg sources between chemosynthetic and trench food webs highlight Hg isotopes as promising tools to trace the deep-sea Hg biogeochemical cycle.


Assuntos
Mercúrio , Poluentes Químicos da Água , Isótopos de Mercúrio/análise , Cadeia Alimentar , Monitoramento Ambiental , Mercúrio/análise , Isótopos , Oceano Índico , Biota , Poluentes Químicos da Água/análise
8.
Nat Commun ; 14(1): 6, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596767

RESUMO

The latest Permian mass extinction (LPME) was triggered by magmatism of the Siberian Traps Large Igneous Province (STLIP), which left an extensive record of sedimentary Hg anomalies at Northern Hemisphere and tropical sites. Here, we present Hg records from terrestrial sites in southern Pangea, nearly antipodal to contemporaneous STLIP activity, providing insights into the global distribution of volcanogenic Hg during this event and its environmental processing. These profiles (two from Karoo Basin, South Africa; two from Sydney Basin, Australia) exhibit significant Hg enrichments within the uppermost Permian extinction interval as well as positive Δ199Hg excursions (to ~0.3‰), providing evidence of long-distance atmospheric transfer of volcanogenic Hg. These results demonstrate the far-reaching effects of the Siberian Traps as well as refine stratigraphic placement of the LPME interval in the Karoo Basin at a temporal resolution of ~105 years based on global isochronism of volcanogenic Hg anomalies.


Assuntos
Mercúrio , Mercúrio/análise , Extinção Biológica , África do Sul , Austrália
9.
Environ Sci Technol ; 56(17): 12713-12722, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35978561

RESUMO

The determination of the mass-independent fractionation of even Hg isotopes (even-MIF, Δ200Hg) in atmospheric samples adds another intriguing feature to the Hg isotope system. Despite our lack of sufficient experimental verification and the momentary absence of a valid mechanism to explain its occurrence, even-MIF could be instrumental in understanding the cycle and deposition of atmospheric Hg. In contrast to slightly positive Δ200Hg values (<0.30‰) frequently observed in most atmospheric samples, large Δ200Hg values (up to 1.24‰) determined in precipitation from Peterborough (Ontario, Canada) stand out and could provide valuable information for the origin of the even-MIF mystery. We now report a systematic analysis of high-resolution rainfall and snowfall samples collected in winter during cold weather at Peterborough, Canada. Dissolved and particulate Hg both displayed large variations of odd-MIF (from -0.93‰ to 2.02‰ for Δ199Hg), which may result from long-range transportation, as the negative odd-MIF in particulate Hg is likely a result of long-distance transport of arctic atmospheric Hg(II). Dissolved Hg revealed significant even-MIF values (from 0.25‰ to 1.19‰ for Δ200Hg) and a negative relationship between Δ200Hg and Δ204Hg, which provide further evidence for the previously proposed conceptual model of Δ200Hg. Disconnected odd-MIF and even-MIF trends were detected in sequentially collected precipitation samples, which further suggests different sources or mechanisms for Δ199Hg and Δ200Hg. Particularly, the high Δ200Hg values highlight the transport of stratospheric Hg through a polar vortex to the sampling region, stimulating further systematic investigation. The new Δ200Hg data for particulate Hg add to existing information on atmospheric Hg(II) worldwide, suggesting a global distribution of Hg characterized by even-MIF in the atmosphere, and further constrain the model of atmospheric Hg deposition.


Assuntos
Monitoramento Ambiental , Mercúrio , Isótopos , Mercúrio/análise , Isótopos de Mercúrio/análise , Ontário
10.
Environ Sci Technol ; 56(15): 10619-10628, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35853134

RESUMO

Haze with high loading of particles may result in significant enrichment of particle-bound Hg (PBM), potentially impacting the atmospheric Hg transformation and transport. However, the dynamics of Hg transformation and the relative environmental effect during severe haze episodes remain unclear. Here, we report Hg isotopic compositions of atmospheric particles (PM2.5, PM10, and TSP) collected during a severe haze episode in Tianjin, China, to investigate the transformation and fate of Hg during haze events. All severe haze samples display significantly higher Δ199Hg (up to 1.50‰) than global urban PBM, which cannot be explained by primary anthropogenic emissions. The high Δ199Hg is likely caused by photoreduction of PBM promoted by water-soluble organic carbon (WSOC) during the particle accumulation period, as demonstrated by the positive correlations of Δ199Hg with WSOC and relative humidity and confirmed by our laboratory-controlled photoreduction experiment. The results show that, on average, 21% of PBM are likely photoreduced and re-emitted back to the atmosphere as Hg(0), potentially requiring revision of atmospheric Hg budgeting and modeling. This study highlights the release of large portions of PBM back to the gas phase through photoreduction, which needs to be taken into account while evaluating the atmospheric Hg cycle and the relative ecological effects.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental/métodos , Isótopos , Mercúrio/análise , Isótopos de Mercúrio/análise , Água
11.
Water Res ; 220: 118689, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661513

RESUMO

The generation of reactive oxygen species (ROS) mediated by minerals and/or microorganisms plays a vital but underappreciated role in affecting carbon and nutrient cycles at soil-water interfaces. It is currently unknown which interactions between microbial communities and iron (Fe) minerals produce hydroxyl radical (HO•), which is the strongest oxidant among ROS. Using a series of well-controlled anoxic incubations of soil slurries, we demonstrated that interactions between microbial communities and Fe minerals synergistically drove HO• production (up to ∼100 nM after 21-day incubation). Microorganisms drove HO• generation in anoxic environments predominantly by modulating iron redox transformation that was more prominent than direct production of ROS by microorganisms. Among the microbial communities, Geobacter, Paucimonas, Rhodocyclaceae_K82, and Desulfotomaculum were the key genera strongly affecting HO• production. In manured soils, the former two species had higher abundances and were crucial for HO• production. In contrast, the latter two species were mainly abundant and important in soils with mineral fertilizers. Our study suggests that abundant highly reactive oxidant HO• can be generated in anoxic environments and the microbial community-mediated redox transformations of iron (oxyhydr)oxides may be responsible for the HO• production. These findings shed light on the microbial generation of HO• in fluctuating redox environments and on consequences for global C and nutrient cycling.


Assuntos
Ferro , Microbiota , Compostos Férricos , Radical Hidroxila , Minerais , Oxidantes , Oxirredução , Espécies Reativas de Oxigênio , Solo
12.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903647

RESUMO

Anthropogenic activities have led to widespread contamination with mercury (Hg), a potent neurotoxin that bioaccumulates through food webs. Recent models estimated that, presently, 200 to 600 t of Hg is sequestered annually in deep-sea sediments, approximately doubling since industrialization. However, most studies did not extend to the hadal zone (6,000- to 11,000-m depth), the deepest ocean realm. Here, we report on measurements of Hg and related parameters in sediment cores from four trench regions (1,560 to 10,840 m), showing that the world's deepest ocean realm is accumulating Hg at remarkably high rates (depth-integrated minimum-maximum: 24 to 220 µg ⋅ m-2 ⋅ y-1) greater than the global deep-sea average by a factor of up to 400, with most Hg in these trenches being derived from the surface ocean. Furthermore, vertical profiles of Hg concentrations in trench cores show notable increasing trends from pre-1900 [average 51 ± 14 (1σ) ng ⋅ g-1] to post-1950 (81 ± 32 ng ⋅ g-1). This increase cannot be explained by changes in the delivery rate of organic carbon alone but also need increasing Hg delivery from anthropogenic sources. This evidence, along with recent findings on the high abundance of methylmercury in hadal biota [R. Sun et al, Nat. Commun. 11, 3389 (2020); J. D. Blum et al, Proc. Natl. Acad. Sci. U. S. A. 117, 29292-29298 (2020)], leads us to propose that hadal trenches are a large marine sink for Hg and may play an important role in the regulation of the global biogeochemical cycle of Hg.


Assuntos
Sedimentos Geológicos/química , Mercúrio , Ecossistema , Oceanos e Mares
13.
Anal Chem ; 93(48): 15905-15912, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34806358

RESUMO

Oceans play a key role in the global mercury (Hg) cycle, but studies on Hg isotopes in seawater are rare due to the extremely low Hg concentration and the lack of a good preconcentration method. Here, we introduce a new coprecipitation method for separating and preconcentrating Hg from seawater for accurate isotope measurement. The coprecipitation was achieved by sequential addition of 0.5 mL of 0.5 M CuSO4, 1 mL of 0.5 M Na2S, and 1 mL of 0.5 M CuSO4 reagents, which allowed for quantitatively precipitating Hg from up to 10 L of seawater. The protocol was validated by testing synthetic solutions with varying Hg and iodide (I-) concentrations and by comparing the reaction times of various reagents added. The method resulted in a quantitative recovery of 98 ± 12% (n = 32, two standard deviations, 2 SD) and a relatively low procedure blank (103 pg of Hg, n = 8). The precipitates were filtrated and analyzed for Hg isotopes. Repeated measurements of synthetic seawaters spiked with certificated standard materials (NIST 3133 and 3177) using the entire method gave identical Hg isotope ratios with near-quantitative Hg recovery, indicating no isotope fractionation during preconcentration. A total of six nearshore seawater samples from the Yellow Sea and the Bohai Sea (China) were analyzed using the coprecipitation method. The data showed a large fractionation of Hg isotopes and revealed the possible impact of both atmospheric and anthropogenic inputs to the coastal seawater Hg budget, implying the potential application of this method in studying marine Hg systematics and global Hg cycling.


Assuntos
Iodo , Mercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Iodetos , Isótopos , Mercúrio/análise , Água do Mar , Poluentes Químicos da Água/análise
14.
Sci Adv ; 7(47): eabh1390, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788084

RESUMO

The Siberian Traps large igneous province (STLIP) is commonly invoked as the primary driver of global environmental changes that triggered the end-Permian mass extinction (EPME). Here, we explore the contributions of coeval felsic volcanism to end-Permian environmental changes. We report evidence of extreme Cu enrichment in the EPME interval in South China. The enrichment is associated with an increase in the light Cu isotope, melt inclusions rich in copper and sulfides, and Hg concentration spikes. The Cu and Hg elemental and isotopic signatures can be linked to S-rich vapor produced by felsic volcanism. We use these previously unknown geochemical data to estimate volcanic SO2 injections and argue that this volcanism would have produced several degrees of rapid cooling before or coincident with the more protracted global warming. Large-scale eruptions near the South China block synchronous with the EPME strengthen the case that the STLIP may not have been the sole trigger.

15.
Sci Total Environ ; 772: 145037, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578172

RESUMO

Although the contribution of calcium ion (Ca2+) to stabilizing organic carbon (OC) in soils has been known for years, we still have a limited understanding of the quantity and molecular composition of Ca2+ bound SOC (Ca-OC) evolution in response to long-term fertilization. Here we report the role of Ca2+ in the accumulation of OC in the topsoil (0-20 cm) from two long-term (25-37 years) fertilization experiment sites. Approximately 4.54-19.27% and 9.00-25.15% of SOC was bound with Ca2+ in the Ferric Acrisol and Fluvic Cambisol, respectively. The application of NPK mineral fertilizers (NPK) decreased (p < 0.05) the Ca-OC stocks from 3.40 t ha-1 to 0.96 t ha-1 and from 2.03 t ha-1 to 1.17 t ha-1 in the Ferric Acrisol and Fluvic Cambisol, respectively. Swine manure (M) addition did not change (p > 0.05) the Ca-OC stock in Ferric Acrisol, but enhanced (p < 0.05) that from 2.03 t ha-1 to 9.75 t ha-1 in Fluvic Cambisol. Fourier transform infrared and carbon (1s)-near X-ray absorption spectroscopies showed that Ca2+ was mainly bound with aromatic carbon and carboxylic carbon. Long-term M fertilization facilitated the binding of Ca2+ with O-alkyl C, suggesting an increment of Ca-linked polysaccharide. Calcium ion was preferentially associated with 13C enriched organic matter (OM). Mineral fertilization promoted the 13C-enriched organic compounds in the Ca-OC, while organic fertilization facilitated the binding of 13C-depleted organic C with Ca2+. This study suggests that Ca-OC may be a potentially vital and stable OC pool in arable soils, and provides direct evidence for the preferential association of OC with Ca2+ in edaphic environments.

16.
Environ Pollut ; 268(Pt B): 115753, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045583

RESUMO

The installation rate of denitrification devices is accelerating in Chinese urban boilers. Previous studies on pulverized coal-fired boilers without denitrification devices showed that combustion products containing mainly oxidized mercury (Hg) preferably enriched lighter Hg isotopes than feed coals. However, the magnitude of this enrichment becomes less pronounced if denitrification devices are installed. The underlying Hg isotope fractionation mechanisms are still unclear. In this study, three types of urban boilers (two pulverized coal-fired boilers, one circulating fluidized bed boiler and one municipal waste incinerator boiler) all installed with denitrification devices were measured for Hg isotope compositions of their feed fuels and corresponding combustion products. We observed little mass independent fractionation but very significant mass dependent fractionation (MDF) between feed fuels and combustion products. The fly ash and desulfurization products both enriched heavier Hg isotopes than feed coals in three coal-fired boilers, and the enrichment of heavy Hg isotopes increased with sequential removal of combustion products in all boilers. Different from previously suggested kinetic MDF for gaseous Hg0(g)→HgII(g) and gaseous HgII(g)→particulate HgII(p) in coal combustion flue gases, we propose an equilibrium MDF for Hg0(g)↔HgII(g) followed by a kinetic MDF for HgII(g)→HgII(p). This equilibrium MDF most likely occurs during Hg0(g) oxidation in denitrification devices, which enriches heavy Hg isotopes in oxidized products (HgII(g) and HgII(p)) that are then sequestrated in fly ash and desulfurization products. The paradigm shift of MDF in boilers with denitrification devices was further verified by parallel Hg isotope measurement in urban atmosphere particulates. Our study clearly demonstrates that modern coal-fired boilers with denitrification devices have a quite different MDF compared to traditional boilers without denitrification devices. This has important implications for estimating isotope signatures of urban boiler Hg emissions, and for isotope tracing of anthropogenic Hg emissions.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Atmosfera , Carvão Mineral/análise , Cinza de Carvão , Desnitrificação , Mercúrio/análise , Isótopos de Mercúrio/análise , Centrais Elétricas
17.
J Hazard Mater ; 407: 124812, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340973

RESUMO

Metals in soil are potentially harmful to humans and ecosystems. Stable isotope measurement may provide "fingerprint" information on the sources of metals. In light of the rapid progress in this emerging field, we present a state-of-the-art overview of how useful stable isotopes are in soil metal source identification. Distinct isotope signals in different sources are the key prerequisites for source apportionment. In this context, Zn and Cd isotopes are particularly helpful for the identification of combustion-related industrial sources, since high-temperature evaporation-condensation would largely fractionate the isotopes of both elements. The mass-independent fractionation of Hg isotopes during photochemical reactions allows for the identification of atmospheric sources. However, compared with traditionally used Sr and Pb isotopes for source tracking whose variations are due to the radiogenic processes, the biogeochemical low-temperature fractionation of Cr, Cu, Zn, Cd, Hg and Tl isotopes renders much uncertainty, since large intra-source variations may overlap the distinct signatures of inter-source variations (i.e., blur the source signals). Stable isotope signatures of non-metallic elements can also aid in source identification in an indirect way. In fact, the soils are often contaminated with different elements. In this case, a combination of stable isotope analysis with mineralogical or statistical approaches would provide more accurate results. Furthermore, isotope-based source identification will also be helpful for comprehending the temporal changes of metal accumulation in soil systems.

18.
Environ Sci Technol ; 54(18): 11344-11355, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822538

RESUMO

Mercury (Hg) is a globally spread trace metal due to its long atmospheric residence time. Yet, our understanding of atmospheric processes (e.g., redox reactions and deposition) driving Hg cycling is still limited, especially in polar regions. The Antarctic continent, by virtue of its remoteness, is the perfect location to investigate Hg atmospheric processes in the absence of significant local anthropogenic impact. Here, we present the first 2 year record (2016-2017) of total suspended particulate mercury (PHg) concentrations along with a year-round determination of an Hg stable isotopic composition in particles collected at Zhongshan Station (ZSS), eastern Antarctic coast. The mean PHg concentration is 21.8 ± 32.1 pg/m3, ranging from 0.9 to 195.6 pg/m3, and peaks in spring and summer. The negative mass-independent fractionation of odd Hg isotopes (odd-MIF, average -0.38 ± 0.12‰ for Δ199Hg) and the slope of Δ199Hg/Δ201Hg with 0.91 ± 0.12 suggest that the springtime isotope variation of PHg is likely caused by in situ photo-oxidation and reduction reactions. On the other hand, the increase of PHg concentrations and the observed odd-MIF values in summer are attributed to the transport by katabatic winds of divalent species derived from the oxidation of elemental Hg in the inland Antarctic Plateau.


Assuntos
Mercúrio , Regiões Antárticas , Monitoramento Ambiental , Isótopos , Mercúrio/análise , Isótopos de Mercúrio/análise , Estações do Ano
19.
Environ Sci Technol ; 54(18): 11137-11145, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32804493

RESUMO

Here, we investigated the photoreduction of Hg(II) (Hg(NO3)2) mediated by dissolved black carbon (DBC, <0.45 µm size fraction) collected from water extracts of biochar derived by pyrolyzing crop residues (rice, soybean, and peanut). Under simulated sunlight conditions, the presence of 5 mg C/L DBC significantly facilitated the production of Hg(0) from Hg(II) (initially at 10 nmol/L) with a reduction ratio of 73 ± 4% in 5.3 h. Inhibition of photolysis-induced reactive oxygen species by a quencher or removal of dissolved oxygen indicated that Hg(II) was mainly reduced by superoxide anion (O2•-). Reduction by electrons transferred from photoexcited DBC components or by organic free radicals produced from photo-Fenton-like reactions was also proposed to play a role. Contrary to dissolved humic substances, the DBC-mediated photoreduction of Hg(II) led to unique positive mass-independent isotopic fractionation (MIF) of Hg(0) (Δ199Hg = 1.8 ± 0.3‰), which was attributed to the dominance of secondary Hg(II) reduction by O2•-. The leachate from soil amended with rice biochar at 1-5% mass ratios exhibited significantly higher photocatalytic efficiency than that from unamended soil (wherein the reduced Hg(0) increased from 27 ± 1 to 63 ± 2% in maximum), and the efficiency positively correlated with the percentage of amended biochar. Under natural illumination conditions, the total mercury and/or methylmercury uptake by roots, shoots, and leaves of lettuce (Lactuca sativa L.) grown in water extracts of rice biochar-amended soil was consistently lower (up to 70 ± 20%) than that without the biochar amendment. The findings highlight that DBC might play an important and previously unrecognized role in the biogeochemical cycle and the environmental impact of mercury.


Assuntos
Mercúrio , Oryza , Poluentes do Solo , Substâncias Húmicas/análise , Lactuca , Solo , Poluentes do Solo/análise , Fuligem
20.
Nat Commun ; 11(1): 3389, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636418

RESUMO

Monomethylmercury (MMHg) is a potent toxin that bioaccumulates and magnifies in marine food webs. Recent studies show abundant methylated Hg in deep oceans (>1000 m), yet its origin remains uncertain. Here we measured Hg isotope compositions in fauna and surface sediments from the Mariana Trench. The trench fauna at 7000-11000 m depth all have substantially positive mass-independent fractionation of odd Hg isotopes (odd-MIF), which can be generated only in the photic zone via MMHg photo-degradation. Given the identical odd-MIF in trench fauna and North Pacific upper ocean (<1000 m) biota MMHg, we suggest that the accumulated Hg in trench fauna originates exclusively from MMHg produced in upper oceans, which penetrates to depth by sorption to sinking particles. Our findings reveal little in-situ MMHg production in deep oceans and imply that anthropogenic Hg released at the Earth's surface is much more pervasive across deep oceans than was previously thought.


Assuntos
Cadeia Alimentar , Isótopos de Mercúrio/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Biota , Fracionamento Químico , Monitoramento Ambiental , Sedimentos Geológicos , Oceano Pacífico , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA