RESUMO
Problems caused by urban heat have prompted the exploration of urban greenery and blue spaces for heat mitigation. Various numerical models can simulate heat-related processes, but their use as support-tools to urban planners remains underexplored, particularly at the city-scale, due to high computational demand and complexity of such models. This study investigates the spatial relationships between urban heat, urban form and urban green and blue spaces with the fast climate model TARGET (The Air-temperature Response to Green/blue-infrastructure Evaluation Tool), which only requires minimal inputs of standard meteorological data, land cover and building geometry data. Using the City of Zurich as our case study, we: (i) validated the TARGET model against air temperature measurements from private sensor networks, (ii) performed a sensitivity analysis to identify key variables affecting urban heat, and (iii) investigated urban heat relationships with blue-green cover at locations frequented by pedestrians. Presence of urban green and blue spaces across the region shows potential for reducing local air temperatures by up to 5.2 °C (with urban forest). Investigating this relationship at different locations in the city revealed key districts that should potentially be targeted for reduction of pedestrian heat-impacts, due to their high pedestrian traffic, fewer green and blue spaces and high daytime air temperatures. Our results not only provide insights into the cooling effect of different amounts of green and blue features in the urban environment, but also demonstrates the application and integration potential of simplified models like TARGET to support the planning of more liveable future cities.
RESUMO
BACKGROUND: Immune escape is an important feature of hepatocellular carcinoma (HCC). The overall response rate of immune checkpoint inhibitors (ICIs) in HCC is still limited. Revealing the immune regulation mechanisms and finding new immune targets are expected to further improve the efficacy of immunotherapy. Our study aims to use CRISPR screening mice models to identify potential targets that play a critical role in HCC immune evasion and further explore their value in improving immunotherapy. METHODS: We performed CRISPR screening in two mice models with different immune backgrounds (C57BL/6 and NPG mice) and identified the immunosuppressive gene Gsk3a as a candidate for further investigation. Flow cytometry was used to analyze the impact of Gsk3a on immune cell infiltration and T-cell function. RNA sequencing was used to identify the changes in neutrophil gene expression induced by Gsk3a and alterations in downstream molecules. The therapeutic value of the combination of Gsk3a inhibitors and anti-programmed cell death protein-1 (PD-1) antibody was also explored. RESULTS: Gsk3a, as an immune inhibitory target, significantly promoted tumor growth in immunocompetent mice rather than immune-deficient mice. Gsk3a inhibited cytotoxic T lymphocytes (CTLs) function by inducing neutrophil chemotaxis. Gsk3a promoted self-chemotaxis of neutrophil expression profiles and neutrophil extracellular traps (NETs) formation to block T-cell activity through leucine-rich α-2-glycoprotein 1 (LRG1). A significant synergistic effect was observed when Gsk3a inhibitor was in combination with anti-PD-1 antibody. CONCLUSIONS: We identified a potential HCC immune evasion target, Gsk3a, through CRISPR screening. Gsk3a induces neutrophil recruitment and NETs formation through the intermediate molecule LRG1, leading to the inhibition of CTLs function. Targeting Gsk3a can enhance CTLs function and improve the efficacy of ICIs.
Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Imunoterapia/métodos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos C57BL , Evasão Tumoral/efeitos dos fármacosRESUMO
Functionalized mesoporous materials have become a promising carrier for enzyme immobilization. In this study, Santa Barbara Amorphous 15 (SBA-15) was modified by N-aminoethyl-γ-aminopropyl trimethoxy (R). R-SBA-15 was employed to purify and immobilize recombinant ß-glucosidase from Terrabacter ginsenosidimutans (BgpA) in one step for the first time. Optimum pH of the constructed R-SBA-15@BgpA were 7.0, and it has 20 â higher optimal temperature than free enzyme. Relative activity of R-SBA-15@BgpA still retained > 70% at 42 â after 8-h incubation. The investigation on organic reagent resistance revealed that the immobilized enzyme can maintain strong stability in 15% DMSO. In leaching test and evaluation of storage stability, only trace amount of protein was detected in buffer of the immobilized enzyme after storage at 4 â for 33 days, and the immobilized BgpA still maintained > 50% relative activity. It also demonstrated good reusability, with 76.1% relative activity remaining after fourteen successive enzymatic hydrolyses of epimedin A to sagittatoside A. The newly proposed strategy is an effective approach for the purification and immobilization of BgpA concurrently. In addition, R-SBA-15@BgpA was demonstrated to have high efficiency and stability in this application, suggesting its great feasibility and potential to produce bioactive compounds such as secondary glycosides or aglycones from natural products.
RESUMO
Oral administration of doxorubicin (DOX) is preferred but challenged owing to poor permeability in the gastrointestinal tract (GIT), efflux of P-glycoprotein, short residence time in the intestine, and rapid hydrolysis. Herein, folic acid-chitosan oligosaccharide conjugate (FA-COS)-modified hydroxylated nanodiamond (ND-OH) was designed to enhance the oral bioavailability of DOX. The carboxyl surface of ND was modified into hydroxyl terminal group to increase the colloidal stability of the system under different pH conditions in GIT. FA-COS modification could prolong retention time, endow the drug with sustained release properties, and actively target intestinal FA receptors. In contrast to DOX/ND-OH, the particle size of DOX/ND-OH/FA-COS increased from 189.5 ± 2.8 to 224.5 ± 1.4 nm, and the zeta potential reversed from - 9.1 ± 0.2 to 14.8 ± 0.4 mV. At 48 h, DOX/ND-OH and DOX/ND-OH/FA-COS released 69.07 ± 5.70% and 35.87 ± 5.64%, respectively. FA-COS modification effectively enhanced the cytotoxicity and intracellular uptake of ND-OH/DOX by Caco-2 cells and prolonged intestinal retention in rats. The internalization of DOX/ND-OH and DOX/ND-OH/FA-COS was mainly mediated by energy-dependent clathrin- and caveolae-mediated endocytosis pathways. Pharmacokinetic study demonstrated that the AUC0-t of DOX/ND-OH and DOX/ND-OH/FA-COS was enhanced by 3.94- and 6.08-fold compared to DOX solution, respectively. These results illustrated that DOX/ND-OH/FA-COS could be an effective strategy to enhance the oral bioavailability of DOX.
Assuntos
Quitosana , Nanodiamantes , Humanos , Ratos , Animais , Portadores de Fármacos/química , Quitosana/química , Ácido Fólico/química , Células CACO-2 , Doxorrubicina , Oligossacarídeos , Sistemas de Liberação de MedicamentosRESUMO
Prosapogenin A is a secondary saponin in Dioscorea zingiberensis, and it showed remarkable pharmacological effects. Due to very low content and lack of well-developed biotransformation, its preparation was not efficient and clean. This study aims to establish an eco-friendly strategy for preparation of Prosapogenin A from plant material. Physical separation was employed to recycle starch and cellulose, and then D101 resin and polyamide packed-bed column was incorporated for purification of total steroidal saponins (TSS). After these pretreatments, purity of TSS was largely increased to 83.2% with recovery at 87.6%, which was subjected to enzymatic hydrolysis. Optimized reaction system was constructed in 0.20 M HAc-NaAc buffer (pH4.2) containing cellulase/TSS (3:1, w/w), and the hydrolysis was performed at 53 °C for 6 h. Consequently, TSS was almost completely hydrolyzed to Prosapogenin A, while the highest yield reached 5.62%. The newly proposed approach is promising for efficient preparation of Prosapogenin A in industrial applications.
Assuntos
Dioscorea , Saponinas , Hidrólise , Saponinas/farmacologia , BiotransformaçãoRESUMO
Swine hepatitis E (SHE) is a new type of zoonotic infectious disease caused by swine hepatitis E virus (SHEV). Open reading frame 3 (ORF3) is a key regulatory and virulent protein of SHEV. Circular RNAs (circRNAs) are a special kind of non-coding RNA molecule, which has a closed ring structure. In this study, to identify the circRNA profile in host cells affected by SHEV ORF3, adenovirus ADV4-ORF3 mediated the overexpression of ORF3 in HepG2 cells, whole genome sequencing was used to investigate the differentially expressed circRNAs, GO and KEGG were performed to enrichment analyze of differentially expressed circRNA-hosting gene, and Targetscan and miRanda softwares were used to analyze the interaction between circRNA and miRNA. The results showed adenovirus successfully mediated the overexpression of ORF3 in HepG2 cells, 1,105 up-regulation circRNAs and 1,556 down-regulation circRNAs were identified in ADV4-ORF3 infection group compared with the control. GO function enrichment analysis of differentially expressed circRNAs-hosting genes classified three main categories (cellular component, biological process and molecular function). KEGG pathway enrichment analysis scatter plot showed the pathway term of top20. The circRNAs with top10 number of BS sites for qRT-PCR validation were selected to confirmed, the results indicated that the up-regulated hsa_circ_0001423 and hsa_circ_0006404, and down-regulated of hsa_circ_0004833 and hsa_circ_0007444 were consistent with the sequencing data. Our findings first preliminarily found that ORF3 protein may affect triglyceride activation (GO:0006642) and riboflavin metabolism (ko00740) in HepG2 cells, which provides a scientific basis for further elucidating the effect of ORF3 on host lipid metabolism and the mechanism of SHEV infection.
Assuntos
Células Hep G2/metabolismo , Vírus da Hepatite E/genética , RNA Circular/genética , Sequenciamento Completo do Genoma/métodos , Animais , Genótipo , Humanos , SuínosRESUMO
As the molecular mechanisms of Brucella ovis pathogenicity are not completely clear, we have applied a transcriptome approach to identify the differentially expressed genes (DEGs) in RAW264.7 macrophage infected with B. ovis. The DEGs related to immune pathway were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analysis. Quantitative real-time PCR (qRT-PCR) was performed to validate the transcriptome sequencing data. In total, we identified 337 up-regulated and 264 down-regulated DEGs in B. ovis-infected group versus mock group. Top 20 pathways were enriched by KEGG analysis and 20 GO by functional enrichment analysis in DEGs involved in the molecular function, cellular component, and biological process and so on, which revealed multiple immunological pathways in RAW264.7 macrophage cells in response to B. ovis infection, including inflammatory response, immune system process, immune response, cytokine activity, chemotaxis, chemokine-mediated signaling pathway, chemokine activity, and CCR chemokine receptor binding. qRT-PCR results showed Ccl2 (ENSMUST00000000193), Ccl2 (ENSMUST00000124479), Ccl3 (ENSMUST00000001008), Hmox1 (ENSMUST00000005548), Hmox1 (ENSMUST00000159631), Cxcl2 (ENSMUST00000075433), Cxcl2 (ENSMUST00000200681), Cxcl2 (ENSMUST00000200919), and Cxcl2 (ENSMUST00000202317). Our findings firstly elucidate the pathways involved in B. ovis-induced host immune response, which may lay the foundation for revealing the bacteria-host interaction and demonstrating the pathogenic mechanism of B. ovis.
Assuntos
Brucella ovis/fisiologia , Brucelose/imunologia , Macrófagos/fisiologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL3/genética , Biologia Computacional , Perfilação da Expressão Gênica , Ontologia Genética , Heme Oxigenase-1/genética , Sistema Imunitário , Imunidade/genética , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos , Células RAW 264.7 , OvinosRESUMO
Brucella ovis infection results in genital damage and epididymitis in rams, placental inflammation and rare abortion in ewes, and neonatal mortality in lambs. However, the mechanism underlying B. ovis infection remains unclear. In the present study, we used prokaryotic transcriptome sequencing to identify the differentially expressed genes (DEGs) between wild-type B. ovis and intracellular B. ovis in RAW264.7 macrophages. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, and quantitative reverse transcriptase PCR (qRT-PCR) was used to validate the top 10 upregulated and downregulated DEGs. The results showed that 212 genes were differentially expressed, including 68 upregulated and 144 downregulated genes, which were mainly enriched in 30 GO terms linked to biological process, cellular component, and molecular function. KEGG analysis showed that the DEGs were enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, beta-alanine metabolism, and quorum sensing pathway. BME_RS01160, BME_RS04270, BME_RS08185, BME_RS12880, BME_RS25875, predicted_RNA865, and predicted_RNA953 were confirmed with the transcriptome sequencing data. Hence, our findings not only reveal the intracellular parasitism of B. ovis in the macrophage immune system, but also help to understand the mechanism of chronic B. ovis infection.
Assuntos
Brucella ovis/fisiologia , Brucelose/imunologia , Imunidade Celular/fisiologia , Líquido Intracelular/fisiologia , Macrófagos/fisiologia , Transcriptoma/fisiologia , Animais , Brucelose/genética , Ontologia Genética , Camundongos , Células RAW 264.7 , OvinosRESUMO
Restoring blood supply is an effective way for the therapy of myocardial infarction (MI). It was reported a specific angiogenic peptide (VMP) derived from vascular endothelial growth factor (VEGF) could activate its receptor to mimic the biological activity of VEGF. In this study, in order to improve the local concentration in infarction region, a collagen-binding domain was synthesized with VMP to construct collagen binding domain (CBD)-VMP peptides. The fused CBD-VMP could bind specifically to collagen which was rich in cardiac extracellular matrix (c-ECM), without impacting the biological activity of VMP peptides. When the CBD-VMP peptides loaded on collagen scaffold and implanted into the rats subcutaneously, significant vascularization was observed. Then, CBD-VMP peptides binding with injectable c-ECM injected into the MI rat by intramuscular administration, significant blood vessels regeneration, and decrease of cell apoptosis were observed, that corelated with the recovery of cardiac function. It might be an alternative promising strategy for the clinical application of MI.
Assuntos
Proteínas Angiogênicas/uso terapêutico , Colágeno/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Proteínas Angiogênicas/administração & dosagem , Animais , Colágeno/administração & dosagem , Masculino , Infarto do Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
Brucellosis is a zoonotic infectious disease caused by Brucella infection. Outer membrane protein 25 (Omp25) is closely related to the virulence and immunogenicity of Brucella. However, the molecular mechanism of Omp25 affecting Brucella-mediated macrophage autophagy remains unclear. Our previous study reported that four miRNAs (the upregulation of mmu-miR-146a-5p and mmu-miR-155-5p and downregulation of mmu-miR-149-3p and mmu-miR-5126) were confirmed and revealed the differentially expressed genes (DEGs) profile in RAW264.7 macrophage cells infected with Brucella melitensis Omp25 deletion mutant (∆Omp25 B. melitensis). Here, we predicted the target genes of the four miRNAs by TargetScan, miRanda, and PicTar. GO and KEGG were used for functional enrichment analysis of DEGs profile to reveal the autophagic pathway-associated genes. The overlapped genes, which drawn the autophagic pathway-associated miRNA-mRNA networks by cytoscape software, were identified by intersecting with the predicted target genes and autophagic pathway-associated DEGs. qRT-PCR was performed to validate the mRNAs of networks. The results showed that the autophagic pathway-associated networks of mmu-miR-149-3p-Ptpn5, mmu-miR-149-3p-Ppp2r3c, and mmu-miR-146a-5p-Dusp16 were identified in RAW264.7 macrophage cells infected with ∆Omp25 B. melitensis. Our findings are of great significance in elucidating the function of Omp25, revealing the infection mechanism of Brucella and prophylaxising and treating brucellosis.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Brucella melitensis/genética , Biologia Computacional/métodos , Macrófagos/fisiologia , Proteínas de Membrana/genética , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Autofagia/genética , Brucella melitensis/isolamento & purificação , Brucelose/genética , Brucelose/patologia , Redes Reguladoras de Genes/genética , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Células RAW 264.7 , Transdução de Sinais/genéticaRESUMO
H5N1 avian influenza poses a serious threat to the poultry industry and human health. Non-structural protein 1 (NS1) plays an important role in the replication and pathogenesis of avian influenza virus (AIV). However, the function of the NS1 gene is still unclear. In this study, illumina genome analyzer iix screening was used to identify the differentially expressed microRNAs (miRNAs) in HEK293 cells expressing H5N1 AIV NS1. There were 13 differentially expressed miRNAs (hsa-miR-17-5p, hsa-miR-221-3p, hsa-miR-22-3p, hsa-miR-31-5p, hsa-miR-20a-5p, hsa-miR-222-3p, hsa-miR-24-3p, hsa-miR-3613-3p, hsa-miR-3178, hsa-miR-4505, hsa-miR-345-3p, hsa-miR-3648, and hsa-miR-455-3p) ( P < 0.01). The qRT-PCR validation results demonstrated that hsa-miR-221-3p, hsa-miR-22-3p, hsa-miR-20a-5p, and hsa-miR-3613-3p were upregulated, while hsa-miR-3178 and hsa-miR-4505 were down-regulated. The softwares targetscan and miranda were further used to predict their target genes, and the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that 20 GO terms and 20 KEGG pathways were significantly enriched. Our findings are the first to report expression profiling of miRNA and their functions in H5N1 AIV NS1-expressing HEK293 cells, and pave the way to further elucidating the accurate interaction mechanism between NS1 and virus replication, thus providing brand new insight into the prophylaxis and treatment of H5N1 AIV.