Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1445223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314883

RESUMO

The growth rate of young ruminants has been associated with production performance in later life, with recent studies highlighting the importance of rumen microbes in supporting the health and growth of ruminants. However, the specific role of rumen epithelium bacteria and microbiota-host interactions in influencing the early life growth rate of ruminants remains poorly understood. In this study, we investigated the rumen fermentation pattern, microbiota characteristics, and global gene expression profiles of the rumen epithelium in 6-month-old goats with varying growth rates. Our results showed that goats with high average daily gain (HADG) exhibited higher rumen propionate concentrations. Goats with low average daily gain (LADG) had the higher relative abundances of rumen epithelium bacteria genera U29-B03 and Quinella, while exhibiting a lower relative abundance of Lachnospiraceae UCG-009. In the rumen fluid, the relative abundances of bacteria genus Alloprevotella were lower and Desulfovibrio were higher in LADG goats compared to HADG goats. Additionally, the relative abundance of fungal genus Symmetrospora was lower in LADG goats compared to HADG goats. Transcriptome analysis showed that 415 genes were differentially expressed between LADG and HADG goats, which were enriched in functions related to cell junction and cell adhesion, etc. Correlation analysis revealed that rumen epithelium bacteria genera UCG-005 and Candidatus Saccharimonas were negatively associated, while Lachnospiraceae NK3A20 group and Oscillospiraceae NK4A214 group were positively associated with average daily gain (ADG) and genes related to barrier function. The rumen fluid bacteria genus Alloprevotella was positively correlated, while Desulfovibrio was negatively correlated with rumen propionate and ammoniacal nitrogen (NH3-N) concentrations, as well as genes related to barrier function and short chain fatty acids (SCFAs) transport. In summary, our study reveals that the higher ruminal fermentation efficiency, improved rumen epithelial barrier functions, and enhanced SCFAs transport in HADG goats could be attributed to the rumen microbiota, particularly the rumen epithelium bacteria, such as Lachnospiraceae and Oscillospiraceae NK4A214 group.

2.
3.
Front Vet Sci ; 11: 1393372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983772

RESUMO

Introduction: The ratio of lysine (Lys) to methionine (Met) with 3.0: 1 is confirmed as the "ideal" profile for milk protein synthesis, but whether this ratio is suitable for milk protein synthesis under HS needs to be further studied. Methods: To evaluate the molecular mechanism by which HS and Lys to Met ratios affect mammary cell functional capacity, an immortalized bovine mammary epithelial cell line (MAC-T) is incubated with 5 doses of Met while maintaining a constant concentration of Lys. The MAC-T cells was treated for 6 h as follow: Lys: Met 3.0: 1 (control 37°C and IPAA 42°C) or treatments under HS (42°C) with different ratios of Lys: Met at 2.0: 1 (LM20), 2.5: 1 (LM25), 3.5: 1 (LM35) and 4.0: 1 (LM40). RNA sequencing was used to assess transcriptome-wide alterations in mRNA abundance. Results: The significant difference between control and other groups was observed base on PCA analysis. A total of 2048 differentially expressed genes (DEGs) were identified in the IPAA group relative to the control group. Similarly, 226, 306, 148, 157 DEGs were detected in the LM20, LM25, LM35 and LM40 groups, respectively, relative to the IPAA group. The relative mRNA abundance of HSPA1A was upregulated and anti-apoptotic genes (BCL2L1 and BCL2) was down-regulated in the IPAA group, compared to the control group (p < 0.05). Compared with the IPAA group, the relative mRNA abundance of anti-apoptotic genes and casein genes (CSN1S2 and CSN2) was up-regulated in the LM25 group (p < 0.05). The DEGs between LM25 and IPAA groups were associated with the negative regulation of transcription RNA polymerase II promoter in response to stress (GO: 0051085, DEGs of BAG3, DNAJB1, HSPA1A) as well as the mTOR signaling pathway (ko04150, DEGs of ATP6V1C2, WNT11, WNT3A, and WNT9A). Several DEGs involved in amino acids metabolism (AFMID, HYKK, NOS3, RIMKLB) and glycolysis/gluconeogenesis (AFMID and MGAT5B) were up-regulated while DEGs involved in lipolysis and beta-oxidation catabolic processes (ALOX12 and ALOX12B) were down-regulated. Conclusion: These results suggested that increasing Met supply (Lys: Met at 2.5: 1) may help mammary gland cells resist HS-induced cell damage, while possibly maintaining lactation capacity through regulation of gene expression.

4.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892271

RESUMO

This study investigated the effects of rumen bypass dandelion extract on the lactation performance, immune index, and mammary oxidative stress of lactating dairy cows fed a high-concentrate diet. This study used a complete randomized block design, and initial milk production, somatic cell counts, and parities were set as block factors. Sixty Holstein cows with similar health conditions and lactating periods (70 ± 15 d) were divided into three groups with 20 replicates per group. The treatments included the LCD group (low-concentrate diet, concentrate-forage = 4:6), HCD group (high-concentrate group, concentrate-forage = 6:4), and DAE group (dandelion aqueous extract group, HCD group with 0.5% DAE). The experimental period was 35 d, and cows were fed three times in the morning, afternoon, and night with free access to water. The results showed the following: (1) Milk production in the HCD and DAE groups was significantly higher (p < 0.05) than that in the LCD group from WK4, and the milk quality differed during the experimental period. (2) The HCD group's pH values significantly differed (p < 0.01) from those of the LCD and DAE groups. (3) In WK2 and WK4 of the experimental period, the somatic cell counts of dairy cows in the HCD group were significantly higher (p < 0.05) than those in the DAE group. (4) The serum concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein carbonyl (PC) in the HCD group were significantly higher (p < 0.05) than those in the LCD group. The activity of catalase (CAT) in the LCD and DAE groups was stronger (p < 0.01) than that in the HCD group. (5) The correlation analysis revealed significantly positive correlations between the plasma LPS concentration and serum concentrations of 8-OHdG (p < 0.01), PC (p < 0.01), and malondialdehyde (MDA, p < 0.05) and significantly negative correlations (p < 0.01) between the plasma LPS concentration and activities of CAT and superoxide dismutase. (6) Compared with that in the HCD and DAE groups, the mRNA expression of α, ß, and κ casein and acetyl CoA carboxylase in bovine mammary epithelial cells was significantly higher (p < 0.05) in the LCD group, and the mRNA expression of fatty acid synthetase and stearoyl CoA desaturase in the LCD group was significantly higher (p < 0.01) than that in the HCD group. (7) Compared with that in the LCD and HCD groups, the mRNA expression of Nrf2 was significantly higher (p < 0.01) in the DAE group, and the mRNA expression of cystine/glutamate transporter and NAD (P) H quinone oxidoreductase 1 in the DAE group was significantly higher (p < 0.05) than that in the HCD group. Overall, feeding a high-concentrate diet could increase the milk yield of dairy cows, but the milk quality, rumen homeostasis, and antioxidative capability were adversely affected. The supplementation of DAE in a high-concentrate diet enhanced antioxidative capability by activating the Nrf2 regulatory factor and improved rumen homeostasis and production performance.


Assuntos
Lactação , Glândulas Mamárias Animais , Leite , Estresse Oxidativo , Extratos Vegetais , Taraxacum , Animais , Bovinos , Estresse Oxidativo/efeitos dos fármacos , Feminino , Taraxacum/química , Lactação/efeitos dos fármacos , Leite/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Dieta/veterinária , Ração Animal/análise
5.
J Agric Food Chem ; 72(2): 983-998, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38189273

RESUMO

Microbial transplantation in early life was a strategy to optimize the health and performance of livestock animals. This study aimed to investigate the effect of active ruminal solids microorganism supplementation on newborn lamb gut microbiota and serum metabolism. Twenty-four Youzhou dark newborn lambs were randomly divided into three groups: (1) newborn lambs fed with sterilized goat milk inoculated with sterilized normal saline (CON), supernatant from ruminal solids (SRS), or autoclaved supernatant from ruminal solids (ASRS). Results showed that SRS increased gut bacterial richness and community, downregulating the Firmicutes/Bacteroidetes ratio, and increased the abundance of some probiotics (Bacteroidetes, Spirochaetota, and Fibrobacterota), while reducing the abundance of Fusobacteriota, compared to the CON group. SRS also improved the plasma metabolic function, such as arachidonic acid metabolism, primary bile acid biosynthesis, and tryptophan metabolism and then actively promoted the levels of ALP and HLD. Our study indicated that inoculation with active ruminal solids significantly affected the intestinal microbial communities and metabolic characteristics, and these changes can improve the growing health of the newborn lamb. These findings provided an experimental and theoretical basis for the application of ruminal solid-attached microorganisms in the nutritional management of lambs reared for human consumption.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Ovinos , Animais Recém-Nascidos , Dieta/veterinária , Cabras/metabolismo , Carneiro Doméstico , Bactérias/genética , Metaboloma , Rúmen/metabolismo , Ração Animal/análise
6.
Front Nutr ; 10: 1058764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937253

RESUMO

Background: Food sociality refers to the exploration of food production, exchange, distribution, and consumption and influences on cultural communication and social meaning. This study aimed to investigate food sociality in three provinces of South China to provide theoretical and practical evidence of food sociality in the region and to revise nutrition policies. Materials and methods: We conducted a qualitative study comprising 25 experts in the fields of nutrition, sociology, food science, and agriculture from Hainan, Guangdong, and Guangxi Province by using a semi-structured in-depth interview, which included 28 pre-determined questions covering six topics. The interviews were conducted between November 2020 and March 2021. Verbatim transcripts were analyzed thematically using NVivo 11.0. Results: Of the 25 experts, the mean age was 50.6 (SD = 8.4) years, 15 (60%) were male, and 22 (88%) held a master's degree or above. The analysis showed that food sociality in three provinces of South China mainly comprises social functions of food and dietary behavior. Regarding social functions of food, the experts expressed that food represents local culture (72%, 18 experts), presents social status and economic power (40%, 10 experts), and is central to special occasions, traditional customs, and etiquette activities (60%, 15 experts). In terms of social functions of dietary behaviors, the majority of experts indicated that food is a social communication tool (72% experts), has geographical characteristics (80% experts), and, to some extent, is used as a proxy for reward or punishment. Furthermore, festivals are one of the core elements of food sociality in the region, although food safety is a major concern. Some dietary behaviors, such as overindulgence in afternoon tea and encouraging drinking, may increase the risk of chronic diseases. Conclusion: Food sociality in three provinces of South China is mainly related to the social function of food and dietary behavior. It is a combination of local culture, social status and economic power, traditional customs, rewards and punishments, geographical food preference, and social communication tools. The authors recommend increasing food safety at festivals and promoting healthy eating behaviors in order to improve the overall health of the population in this region.

7.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511146

RESUMO

Serotonin (5-HT) has been reported to play an important role in mammary gland involution that is defined as the process through which the gland returns to a nonlactating state. However, the overall picture of the regulatory mechanisms of 5-HT and the effects of serotonylation on mammary gland involution still need to be further investigated. The current study aimed to investigate the effects of 5-HT on global gene expression profiles of bovine mammary epithelial cells (MAC-T) and to preliminarily examine whether the serotonylation involved in the mammary gland involution by using Monodansylcadaverine (MDC), a competitive inhibitor of transglutaminase 2. Results showed that a high concentration of 5-HT decreased viability and transepithelial electrical resistance (TEER) in MAC-T cells. Transcriptome analysis indicated that 2477 genes were differentially expressed in MAC-T cells treated with 200 µg/mL of 5-HT compared with the control group, and the Notch, p53, and PI3K-Akt signaling pathways were enriched. MDC influenced 5-HT-induced MAC-T cell death, fatty acid synthesis, and the formation and disruption of tight junctions. Overall, a high concentration of 5-HT is able to accelerate mammary gland involution, which may be regulated through the Notch, p53, and PI3K-Akt signaling pathways. Serotonylation is involved in bovine mammary gland involution.


Assuntos
Lactação , Serotonina , Feminino , Animais , Bovinos , Serotonina/farmacologia , Serotonina/metabolismo , Sobrevivência Celular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glândulas Mamárias Animais/metabolismo , Perfilação da Expressão Gênica , Células Epiteliais/metabolismo , Permeabilidade
8.
FASEB J ; 37(2): e22724, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583687

RESUMO

Mitosis entails global and dramatic alterations, such as higher-order chromatin organization disruption, concomitant with global transcription downregulation. Cells reliably re-establishing gene expression patterns upon mitotic exit and maintaining cellular identities remain poorly understood. Previous studies indicated that certain transcription factors (TFs) remain associated with individual loci during mitosis and serve as mitotic bookmarkers. However, it is unclear which regulatory factors remain bound to the compacted mitotic chromosomes. We developed formaldehyde-assisted isolation of regulatory elements-coupled mass spectrometry (FAIRE-MS) that combines FAIRE-based open chromatin-associated protein pull-down and mass spectrometry (MS) to quantify the open chromatin-associated proteome during the interphase and mitosis. We identified 189 interphase and mitosis maintained (IM) regulatory factors using FAIRE-MS and found intrinsically disordered proteins and regions (IDP(R)s) are highly enriched, which plays a crucial role in liquid-liquid phase separation (LLPS) and chromatin organization during the cell cycle. Notably, in these IDP(R)s, we identified mitotic bookmarkers, such as CEBPB, HMGB1, and TFAP2A, and several factors, including MAX, HMGB3, hnRNP A2/B1, FUS, hnRNP D, and TIAL1, which are at least partially bound to the mitotic chromosome. Furthermore, it will be essential to study whether these IDP(R)s through LLPS helps cells transit from mitosis to the G1 phase during the cell cycle.


Assuntos
Cromatina , Proteoma , Proteoma/genética , Cromatina/genética , Cromossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mitose , Espectrometria de Massas
9.
ACS Biomater Sci Eng ; 8(8): 3424-3437, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35878006

RESUMO

Novel copolymer brushes of quaternized sodium alginate-g-(2-ethyl-2-oxazoline)n are achieved by the grafting reaction of 2-ethyl-2-oxazoline (EOX) from benzyl bromide groups in quaternized sodium alginate (QSA). The average number of (EOX)n structural units is mediated from 1 to 5 by changing the molar ratio of the EOX monomer to benzyl bromide side groups. There exists obvious microphase separation between the QSA backbone and (EOX)n segments in the copolymer brushes due to their thermodynamic incompatibility. The strong hydrogen-bonding interaction between -OH groups in the backbone and N─C═O groups in (EOX)n segments is helpful for the construction of reversible supramolecular networks. The copolymer brushes show low cytotoxicity for HeLa cells and good antibacterial properties for Escherichia coli and Staphylococcus aureus for the contribution of hydrophilic (EOX)n segments and antibacterial activity of the quaternary ammonium. The antiprotein behavior of polymer surfaces is improved after rearrangement of (EOX)n segments by tetrahydrofuran (THF) vapor induction. These copolymer brushes have good prospects for biomedical applications.


Assuntos
Alginatos , Polímeros , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Células HeLa , Humanos , Ligação de Hidrogênio , Polímeros/farmacologia
10.
Animals (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827885

RESUMO

Heat stress (HS) is one of the most serious factors to negatively affect the lactation performance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was demonstrated that HS decreases the lactation performance of dairy cows, partly through altering gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mechanisms under HS remains largely unknown. The objective of this study was to determine whether HS induced changes in intracellular metabolites and gene transcription related to amino acid metabolism, amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary epithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 °C (Control group) and 42 °C (HS group). Relative to the control group, HS led to a greater mRNA expression of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the control group, metabolomics using liquid chromatography tandem-mass spectrometry identified 417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0 in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline, cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR, AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative to the control group. Compared with the control group, HS also led to greater mRNA expression of the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.

11.
Front Microbiol ; 12: 770591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819925

RESUMO

Garlic skin, a by-product of garlic processing, was supposed to improve the fermentation quality of high-moisture silages because of its low moisture content and active compounds. Thus, fermentation and microbial characteristics of high-moisture Pennisetum hydridum ensiled with the addition of 0, 10, 20, and 30 wt% garlic skin (on a fresh matter basis) were analyzed during a 60-days fermentation. Results showed that the addition of garlic skin increased the dry matter content and lactic acid production, and decreased the pH and ammonia-N content of the silage. Adding garlic skin changed the relative abundance of bacterial communities with an increase in Lactobacillus and a decrease in Clostridium relative abundance. In conclusion, co-ensiling of high-moisture Pennisetum hydridum with garlic skin could be a simple approach to improve the silage quality and nutrients preservation.

12.
Front Vet Sci ; 8: 689085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368276

RESUMO

Copper-based fungicides have a long history of usage in agriculture and aquaculture. With the rapid development of metal-based nanoparticles, copper-based nanoparticles have attracted attention as a potential material for prevention and control of Saprolegnia parasitica. The present study investigated the effectiveness of copper/carbon core/shell nanoparticles (CCCSNs) and a commercial CCCSNs filter product (COPPERWARE®) against S. parasitica in a recirculating system. Results showed that the growth of agar plugs with mycelium was significantly suppressed after exposure to both CCCSNs powder and COPPERWARE® filters. Even the lowest concentration of CCCSNs used in our study (i.e., 100 mg/mL) exhibited significant inhibitory effects on S. parasitica. The smallest quantity of the filter product COPPERWARE® (3.75 × 3.7 × 1.2 cm, 2.58 g) used in our aquarium study also demonstrated significant inhibition compared with the control group. However, we observed leaching of copper into the water especially when larger quantities of COPPERWARE® were used. Water turbidity issues were also observed in tanks with the filter material. Besides these issues, which should be further investigated if the product is to be used on aquatic species sensitive to copper, CCCSNs has promising potential for water disinfection.

13.
Toxins (Basel) ; 13(5)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069117

RESUMO

The present study was aimed at investigating the effects of sodium butyrate and sodium ß-hydroxybutyrate on lactation and health of dairy cows fed a high-concentrate (HC) diet. Eighty mid-lactation dairy cows with an average milk yield of 33.75 ± 5.22 kg/d were randomly allocated to four groups (n = 20 per group) and were fed either a low-concentrate (LC) diet, a HC diet, the HC diet with 1% sodium butyrate (HCSB), or the HC diet with 1% sodium ß-hydroxybutyrate (HCHB). The feeding trial lasted for 7 weeks, with a 2-week adaptation period and a 5-week measurement period, and the trial started from 96 ± 13 d in milk. Sodium butyrate supplementation delayed the decline in milk production and improved milk synthesis efficiency and milk fat content. Additionally, it decreased the proinflammatory cytokines and acute phase proteins (APPs) in plasma, the leucocytes in blood, the somatic cell count (SCC) in milk, and the gene expression of pattern recognition receptors (PRRs) and proinflammatory cytokines in the mammary gland, due to decreasing the contents of bacterial cell wall components (lipopolysaccharide, LPS; peptidoglycan, PGN; and lipoteichoic acid, LTA) in the rumen and plasma, compared with the HC diet. Sodium ß-hydroxybutyrate supplementation also improved milk yield, milk synthesis efficiency and milk fat content and partially reduced the adverse effects caused by the HC diet, but it had no effect on decreasing bacterial cell wall components in the rumen and plasma, compared with the HC diet. Collectively, both sodium butyrate and sodium ß-hydroxybutyrate mitigated the negative effects of HC diet on lactation and health of dairy cows, with sodium butyrate being more effective than sodium ß-hydroxybutyrate.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Ração Animal/efeitos adversos , Bactérias/isolamento & purificação , Ácido Butírico/farmacologia , Animais , Bovinos , Parede Celular/metabolismo , Dieta/veterinária , Feminino , Lactação , Leite/metabolismo , Rúmen/metabolismo
14.
Toxins (Basel) ; 12(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752301

RESUMO

In practical dairy production, cows are frequently subjected to inflammatory diseases, such as high-grain diet-induced subacute ruminal acidosis (SARA) as well as mastitis and metritis. Under the circumstances, lipopolysaccharide (LPS) induces oxidative stress within the cow and in the mammary epithelial cells. It has implications in practical production to alleviate oxidative stress and to optimize the lactational function of the mammary epithelial cells. This study thus aimed to investigate the antioxidative effects of dandelion aqueous extract (DAE) on LPS-induced oxidative stress and the mechanism of DAE as an antioxidant to alleviate oxidative stress through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the bovine mammary epithelial cell line MAC-T cells. The cells were cultured for 48 h in six treatments including control (without LPS and DAE), LPS (100 ng/mL), DAE10 (100 ng/mL LPS and 10 µg/mL DAE), DAE50 (100 ng/mL LPS and 50 µg/mL DAE), DAE100 (100 ng/mL LPS and 100 µg/mL DAE), and DAE200 (100 ng/mL LPS and 200 µg/mL DAE), respectively. The results showed that cell viability was reduced by LPS, and the adverse effect of LPS was suppressed with the supplementation of DAE. Lipopolysaccharide-induced oxidative stress through enhancing reactive oxygen species (ROS) production, resulted in increases in oxidative damage marker concentrations, while 10 and 50 µg/mL DAE alleviated the LPS-induced oxidative stress via scavenging cellular ROS and improving antioxidant enzyme activity. The upregulation of antioxidative gene expression in DAE treatments was promoted through activating the Nrf2 signaling pathway, with DAE at a concentration of 50 µg/mL exhibiting the highest effect. Overall, DAE acted as an effective antioxidant to inhibit LPS-induced oxidative stress and as a potential inducer of the Nrf2 signaling pathway.


Assuntos
Antioxidantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Glândulas Mamárias Animais/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Taraxacum , Animais , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Toxins (Basel) ; 12(8)2020 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748871

RESUMO

The mammary gland of the cow is particularly susceptible to infections of a wide range of pathogenic bacteria, including both Gram-positive and Gram-negative bacteria. The endotoxins of these pathogenic bacteria include peptidoglycan (PGN), lipoteichoic acid (LTA) and lipopolysaccharide (LPS), and they are the pathogen-associated molecular patterns (PAMPs) to induce mastitis. LPS can directly inhibit proliferation and milk fat synthesis of bovine mammary epithelial cells (BMECs) while inducing mastitis, but it is unclear whether PGN and LTA also have such effects. Furthermore, since the three PAMPs usually appear simultaneously in the udder of cows with mastitis, their synergistic effects on proliferation and milk fat synthesis of BMECs are worth investigating. The immortalized BMECs (MAC-T cells) were stimulated for 24 h using various concentrations of PGN, LTA and LPS, respectively, to determine the doses that could effectively cause inflammatory responses. Next, the cells were stimulated for 24 h with no endotoxins (CON), PGN, LTA, LPS, PGN + LTA, and PGN + LTA + LPS, respectively, with the predetermined doses to analyze their effects on proliferation and milk fat synthesis of BMECs. PGN, LTA and LPS successfully induced inflammatory responses of BMECs with doses of 30, 30 and 0.1 µg/mL, respectively. Although the proliferation of BMECs was significantly inhibited in the following order: LTA < PGN + LTA < PGN + LTA + LPS, there was no change in cell morphology and cell death. LTA significantly promoted the expression of fatty acid synthesis-related genes but did not change the content of intracellular triglyceride (TG), compared with the CON group. The mRNA expression of fatty acid synthesis-related genes in the LPS group was the lowest among all the groups. Meanwhile, LPS significantly decreased the content of intracellular non-esterified fatty acids (NEFAs) and TG, compared with the CON group. PGN had no effects on milk fat synthesis. Co-stimulation with PGN, LTA and LPS significantly increased the expression of fat acid synthesis-related genes and the intracellular NEFAs, but decreased intracellular TG, compared with sole LPS stimulation. Collectively, PGN, LTA and LPS showed an additive effect on inhibiting proliferation of BMECs. The promoting role of LTA in fatty acid synthesis might offset the negative effects of LPS in this regard, but co-stimulation with PGN, LTA and LPS significantly decreased intracellular TG content.


Assuntos
Células Epiteliais/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Glândulas Mamárias Animais/citologia , Leite/metabolismo , Peptidoglicano/farmacologia , Ácidos Teicoicos/farmacologia , Animais , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Células Epiteliais/metabolismo , Feminino
16.
Toxins (Basel) ; 12(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545333

RESUMO

Mastitis is usually caused by a variety of pathogenic bacteria that include both Gram-positive and Gram-negative bacteria. Lipopolysaccharide (LPS) is the pathogen-associated molecular pattern (PAMP) of Gram-negative bacteria, and peptidoglycan (PGN) and lipoteichoic acid (LTA) are those of Gram-positive bacteria. The effects of LPS, PGN and/or LTA on inflammatory response and lactation in bovine mammary epithelial cells (BMECs) are well studied, but the epigenetic mechanisms of their effects received less attention. Furthermore, since the three PAMPs are often simultaneously present in the udder of cows with mastitis, it has implications in practice to study their additive effects. The results show that co-stimulation of bovine mammary epithelial cells with PGN, LTA, and LPS induced a higher number of differentially expressed genes (DEGs) and greater expressions of inflammatory factors including interleukin (IL)-1ß, IL-6, IL-8, tumor necrosis factor-α (TNF-α), chemokine (C-X-C motif) ligand (CXCL)1, and CXCL6. In addition, co-stimulation further increased DNA hypomethylation compared with sole LPS stimulation. Co-stimulation greatly decreased casein expression but did not further decrease histone acetylation levels and affect the activity of histone acetyltransferase (HAT) and histone deacetylase (HDAC), compared with sole LPS stimulation. Collectively, this study demonstrated that PGN, LTA, and LPS had an additive effect on inducing transcriptome changes and inflammatory responses in BMECs, probably through inducing a greater decrease in DNA methylation. Co-stimulation with PGN, LTA, and LPS decreased casein expression to a greater degree, but it might not be linked to histone acetylation and HAT and HDAC activity.


Assuntos
Epigênese Genética/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Lactação/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite/microbiologia , Moléculas com Motivos Associados a Patógenos/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Metilação de DNA/efeitos dos fármacos , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Lipopolissacarídeos/farmacologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/fisiopatologia , Mastite/genética , Mastite/metabolismo , Mastite/fisiopatologia , Peptidoglicano/farmacologia , Ácidos Teicoicos/farmacologia
17.
Toxins (Basel) ; 12(4)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283626

RESUMO

Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common pathogens of mastitis, and S. aureus generally causes subclinical mastitis which is more persistent and resistant to treatment. Peptidoglycan (PGN) and lipoteichoic acid (LTA) are cell wall components of S. aureus. Although the roles of PGN and LTA in causing inflammation are well studied, the epigenetic mechanisms of the effects of PGN and LTA on the inflammation and lactation remain poorly understood. This study characterized the gene expression profiling by RNA sequencing and investigated DNA methylation and histone acetylation in relation to inflammation and lactation in the immortalized bovine mammary epithelial cell line (MAC-T). The cells were cultured for 24 h with neither PGN nor LTA (CON), PGN (30 µg/mL), LTA (30 µg/mL), and PGN (30 µg/mL) + LTA (30 µg/mL), respectively. The number of differentially expressed genes (DEGs) and the expression of proinflammatory factors including interleukin (IL)-1ß, IL-6, IL-8, chemokine (C-X-C motif) ligand (CXCL)1, and CXCL6 of the treatments increased in the following order: CON < PGN < LTA < PGN + LTA, and the DEGs mainly enriched on the cytokine-cytokine receptor interaction and chemokine signaling pathway. LTA and PGN + LTA induced hypomethylation of global DNA by suppressing DNA methyltransferase (DNMT) activity. PGN and LTA, alone or combined, decreased the mRNA expression of casein genes (CSN1S1, CSN2, and CSN3) and the expression of two caseins (CSN2 and CSN3), and reduced histone H3 acetylation by suppressing histone acetyltransferase (HAT) activity and promoting histone deacetylase (HDAC) activity. Collectively, this study revealed that PGN and LTA induced inflammation probably due to decreasing DNA methylation through regulating DNMT activity, and decreased lactation possibly through reducing histone H3 acetylation by regulating HAT and HDAC activity in bovine mammary epithelial cells.


Assuntos
Metilação de DNA , Células Epiteliais/microbiologia , Histonas/metabolismo , Lactação , Lipopolissacarídeos/metabolismo , Glândulas Mamárias Animais/microbiologia , Mastite/microbiologia , Peptidoglicano/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo , Acetilação , Animais , Bovinos , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Células Epiteliais/metabolismo , Feminino , Redes Reguladoras de Genes , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/fisiopatologia , Mastite/genética , Mastite/metabolismo , Mastite/fisiopatologia , Processamento de Proteína Pós-Traducional , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/fisiopatologia , Transcriptoma
18.
ACS Omega ; 5(1): 547-555, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956801

RESUMO

Orexins/hypocretins and their receptors (OXRs) are ubiquitously distributed throughout the nervous system and peripheral tissues. Recently, various reports have indicated that orexins play regulatory roles in numerous physiological processes involved in obesity, energy homeostasis, sleep-wake cycle, analgesia, alcoholism, learning, and memory. This review aims to outline recent progress in the research and development of orexins used in biochemical signaling pathways, secretion pathways, and the regulation of energy metabolism/adipose tissue development. Orexins regulate a variety of physiological functions in the body by activating phospholipase C/protein kinase C and AC/cAMP/PKA pathways, through receptors coupled to Gq and Gi/Gs, respectively. The secretion of orexins is modulated by blood glucose, blood lipids, hormones, and neuropeptides. Orexins have critical functions in energy metabolism, regulating both feeding behavior and energy expenditure. Increasing the sensitivity of orexin-coupled hypothalamic neurons concurrently enhances spontaneous physical activity, non-exercise activity thermogenesis, white adipose tissue lipolysis, and brown adipose tissue thermogenesis. With this comprehensive review of the current literature on the subject, we hope to provide an integrated perspective for the prevention/treatment of obesity.

19.
Br J Nutr ; 122(10): 1103-1112, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31474235

RESUMO

As the precursor to NAD+ and NADP+, niacin is important for catabolic and anabolic redox reactions. In addition, niacin is known for its anti-lipolytic action via a hydroxycarboxylic acid-2-receptor-dependent mechanism. The anti-lipolytic effects of traditional free niacin supplementation during transition periods had been studied extensively, but the reported effects are ambiguous. In the past decade, a series of studies were conducted to evaluate the effects of rumen-protected niacin (RPN) on production performance and metabolic status in early lactation and on heat stress in dairy cows. Feeding RPN seems more effective than free niacin regarding increasing circulating niacin concentration. The rebound of plasma NEFA was found after termination of niacin abomasal infusion. Feeding RPN or infusion of niacin via the abomasum could suppress lipolysis and reduce insulin resistance in early lactation. Additionally, RPN supplementation could possibly relieve heat stress through vasodilation during moderate to severe heat stress condition. However, these beneficial effects of niacin supplementation have not always been observed. The inconsistent results across studies may be related to dosages of niacin supplementation, rebound of plasma NEFA concentration, stage of lactation or severity of heat stress. Overall, the current review is to present updated information on niacin nutrition in dairy cows and the recommendations are given for future research.


Assuntos
Bovinos , Suplementos Nutricionais , Niacina/administração & dosagem , Rúmen/metabolismo , Vitaminas/administração & dosagem , Animais , Feminino , Niacina/química , Vitaminas/química
20.
Biol Trace Elem Res ; 155(1): 132-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912254

RESUMO

Zinc has been shown to be an inhibitor of apoptosis for many years. The present study was designed to investigate effects of three zinc chemical forms on H2O2-induced cell apoptosis in IEC-6 cells via analysis of cell vitality, LDH activity, apoptosis percentage, caspase-3 activity, and Bcl-2, Bax, and caspase-3, -8, and -9 gene expression. Cells were divided into H2O2 and zinc sources+H2O2 groups, and there are three different zinc sources [zinc oxide nanoparticle (nano-ZnO), zinc oxide (ZnO), and zinc sulfate (ZnSO4)] and three concentrations (normal = 25 µM, medium = 50 µM, and high = 100 µM) used in this article. In the present study, we found the striking cytotoxicity of H2O2 higher than 200 µM on cell vitality, LDH activity, and apoptosis percentage in the cells using five different concentrations (50, 100, 200, 400, and 800 µM) of H2O2 for 4 h. Moreover, we observed that cell vitality was increased, LDH activity and apoptotic percentage were decreased, and gene expression level of Bax and caspase-3 and -9 was markedly reduced, while gene expression level of Bcl-2 and ratio of Bcl-2/Bax were increased in normal concentration groups of nano-ZnO and ZnSO4 compared with H2O2 group, but no significant difference was observed in caspase-8 gene expression. Furthermore, medium or, more intensely, high concentrations of nano-ZnO and ZnSO4 enhanced H2O2-induced cell apoptosis. Compared with nano-ZnO and ZnSO4, ZnO showed weakest protective effect on H2O2-induced apoptosis at normal concentration and was less toxic to cells at high level. Taken together, we proposed that preventive and protective effects of zinc on H2O2-induced cell apoptosis varied in IEC-6 cells with its chemical forms and concentrations, and maybe for the first time, we suggested that nano-ZnO have a protective effect on H2O2-induced cell apoptosis in IEC-6 cells.


Assuntos
Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Óxido de Zinco/farmacologia , Sulfato de Zinco/farmacologia , Animais , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 9/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Intestinos/citologia , L-Lactato Desidrogenase/metabolismo , Nanopartículas , Oxidantes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA