Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763499

RESUMO

The corrosion resistance of zinc-aluminum-magnesium steel plates (Zn-Al-Mg steel plates) is significantly higher than that of galvanized steel plates. However, the unsatisfactory bonding performance of Zn-Al-Mg steel plates significantly limits their widespread application. In this study, X-ray photoelectron spectroscopy is employed to detect changes in the surface oxygen content of Zn-Al-Mg steel plates after different temperature treatments to confirm the existence of surface loose layers. In particular, changes in the surface oxygen content of the Zn-Al-Mg steel plates after the oxide layer is removed are investigated under saturated H2O vapor and O2 environmental conditions, and the cause of the formation of loose surface layers is determined. The uneven distribution of elements on the surface of the Zn-Al-Mg steel plates is investigated with scanning electron microscopy and energy dispersive spectroscopy. Nuclear magnetic resonance is employed to determine the size of the network spatial structure formed by silane coupling agents under different hydrolysis conditions and to further investigate the bonding performance of hydrolysate-modified Zn-Al-Mg steel plates. Several typical automotive adhesives are utilized to compare and examine the changes in the tensile strength of the Zn-Al-Mg steel plate bonding before and after modification with the silane coupling agent and analyze the structural damage of the adhesive at the bonding interface. The results confirm that the silane coupling agent strengthens the loose layer on the surface of the Zn-Al-Mg steel plate.

2.
ACS Sens ; 8(4): 1733-1741, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36950737

RESUMO

The surface-enhanced Raman scattering (SERS) technique is a promising method for the detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 3-nitro-1,2,4-triazol-5-one (NTO) because of its high sensitivity to trace substances. However, most SERS detection processes are often nonautomated as well as exhibit low efficiency and toxic exposure, which often poses potential danger to operators. Herein, we propose the integration of SERS with digital microfluidics (SERS-DMF) for automated, high-throughput, and high-sensitivity detection of explosives. First, we carefully designed a DMF chip comprising 40 drive electrodes and 8 storage electrodes to achieve a high-throughput process. And different concentrations of target molecules, silver nanoparticles (Ag NPs), and salts were loaded into the DMF chip. Then, the droplet aggregation, incubation, and detection processes were automatically controlled using the SERS-DMF platform. In addition, Ag NPs were efficiently aggregated by screening different types and concentrations of salts, resulting in "hotspots" and the SERS effect. With the help of the SERS-DMF platform, two explosive samples were automatically detected with high throughput and high sensitivity. The detection limits of TNT and NTO were 10-7 and 10-8 M, respectively. In addition, compared with nonautomatic operations, the SERS-DMF platform exhibited better reproducibility and higher efficiency for the detection of explosives. The proposed SERS-DMF thus has considerable potential as an analytical technique for detecting hazardous substances.


Assuntos
Substâncias Explosivas , Nanopartículas Metálicas , Trinitrotolueno , Microfluídica , Sais , Reprodutibilidade dos Testes , Prata
3.
Dalton Trans ; 51(38): 14498-14507, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36069863

RESUMO

The rational design and exploration of low-cost, highly efficient, and robust bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts are essential for the application of zinc-air batteries. Herein, a novel highly active and stable oxygen electrode catalyst is designed based on in situ construction of FeCo alloy nanoparticles embedded in nitrogen-doped carbon nanotubes (FeCo/N-CNTs-800) with a bamboo-like structure. The unique architecture of bamboo-like nanotubes, the large surface area with abundant mesoporous structure, and the strong coupling interactions between the encapsulated alloy nanoparticle core and the nitrogen-doped graphitic carbon shell synergistically enhance the electrocatalytic activity. As a result, FeCo/N-CNTs-800 exhibits remarkable ORR (with a half-wave potential of 0.891 V in 0.1 M KOH) and OER (with an overpotential of 359 mV to deliver 10 mA cm-2 in 1 M KOH) performance, respectively. More impressively, an assembled zinc-air battery with the bifunctional FeCo/N-CNTs-800 catalyst as the air electrode demonstrates a large power density of 200.4 mW cm-2 and robust cycling performance over 445 h compared to precious-metal catalysts Pt/C∥IrO2. Thus, the electrocatalyst presented in this work holds great potential as an air cathode for practical applications of zinc-air batteries.

4.
Materials (Basel) ; 15(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160916

RESUMO

We explore a more concise process for the preparation of high-purity alumina and to address the problem of some conventional micro- and nano-adsorbents having difficulty in exposing their adsorption sites to target pollutants in solution due to the heavy aggregation of the adsorbent, which confers poor adsorption properties. The methods of using gamma-phase high-purity mesoporous alumina (HPMA), with its excellent adsorption properties and high adsorption rates of Congo Red, and of using lower-cost industrial aluminum hydroxide by direct aging and ammonium salt substitution were successfully employed. The results showed that the purity of HPMA was as high as 99.9661% and the total removal rate of impurities was 98.87%, a consequence of achieving a large specific surface area of 312.43 m2 g-1, a pore volume of 0.55 cm3 g-1, and an average pore diameter of 3.8 nm. The adsorption process was carried out at 25 °C, the concentration of Congo Red (CR) dye was fixed at 250 mg L-1 and the amount of adsorbent used was 100 mg. The HPMA sample exhibited an extremely fast adsorption rate in the first 10 min, with adsorption amounts up to 476.34 mg g-1 and adsorption efficiencies of 96.27%. The adsorption equilibrium was reached in about 60 min, at which time the adsorbed amount was 492.19 mg g-1 and the dye removal rate was as high as 98.44%. One-hundred milligrams of adsorbent were weighed and dispersed in 200-mL CR solutions with mass concentrations ranging from 50-1750 mg L-1 to study the adsorption isotherms. This revealed that the saturation adsorption capacity of the produced HPMA was 1984.64 mg g-1. Furthermore, the process of adsorbing Congo Red in the synthesized product was consistent with a pseudo-second order model and the Langmiur model. It is expected that this method of producing HPMA will provide a productive, easy and efficient means of treating toxic dyes in industrial wastewater.

5.
Materials (Basel) ; 15(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35057385

RESUMO

In the electrolysis of water process, hydrogen is produced and the anodic oxygen evolution reaction (OER) dominates the reaction rate of the entire process. Currently, OER catalysts mostly consist of noble metal (NM) catalysts, which cannot be applied in industries due to the high price. It is of great importance to developing low-cost catalysts materials as NM materials substitution. In this work, jarosite (AFe3(SO4)2(OH)6, A = K+, Na+, NH4+, H3O+) was synthesized by a one-step method, and its OER catalytic performance was studied using catalytic slurry (the weight ratios of jarosite and conductive carbon black are 2:1, 1:1 and 1:2). Microstructures and functional groups of synthesized material were analyzed using XRD, SEM, FI-IR, etc. The OER catalytic performance of (NH4)Fe3(SO4)2(OH)6/conductive carbon black were examined by LSV, Tafel, EIS, ECSA, etc. The study found that the OER has the best catalytic performance when the weight ratio of (NH4)Fe3(SO4)2(OH)6 to conductive carbon black is 2:1. It requires only 376 mV overpotential to generate current densities of 10 mA cm-2 with a small Tafel slope (82.42 mV dec-1) and large Cdl value (26.17 mF cm-2).

6.
Nat Commun ; 12(1): 6835, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824261

RESUMO

A limitation of standard brightfield microscopy is its low contrast images, especially for thin specimens of weak absorption, and biological species with refractive indices very close in value to that of their surroundings. We demonstrate, using a planar photonic chip with tailored angular transmission as the sample substrate, a standard brightfield microscopy can provide both darkfield and total internal reflection (TIR) microscopy images with one experimental configuration. The image contrast is enhanced without altering the specimens and the microscope configurations. This planar chip consists of several multilayer sections with designed photonic band gaps and a central region with dielectric nanoparticles, which does not require top-down nanofabrication and can be fabricated in a larger scale. The photonic chip eliminates the need for a bulky condenser or special objective to realize darkfield or TIR illumination. Thus, it can work as a miniaturized high-contrast-imaging device for the developments of versatile and compact microscopes.


Assuntos
Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Desenho de Equipamento , Microscopia , Nanopartículas , Fótons , Ressonância de Plasmônio de Superfície
7.
Materials (Basel) ; 14(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34639863

RESUMO

To mitigate the global greenhouse effect and the waste of carbon dioxide, a chemical raw material, high-purity γ-phase mesoporous alumina (MA) with excellent CO2 adsorption performance was synthesized by the direct aging method and ammonium salt substitution method. With this process, not only can energy consumption and time be shortened to a large extent but the final waste can also be recycled to the mother liquor by adding calcium hydroxide. Reaction conditions, i.e., pH value, calcination temperature, and desodium agent, were investigated in detail with the aid of X-ray fluorescence spectrum (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Hallender (BJH) methods, nonlocal density functional theory (NLDFT), transmission electron microscopy (TEM), temperature-programmed desorption of CO2 (CO2-TPD), and presented CO2 adsorption measurement. The results of this study are summarized as follows: the impurity content of the MA synthesized under optimal conditions is less than 0.01%, and its total removal rate of impurities is 99.299%. It was found that the MA adsorbent has a large specific surface area of 377.8 m2/g, pore volume of 0.55 cm3/g, and its average pore diameter is 3.1 nm. Under the condition of a gas flow rate of 20 cm3/min, its CO2 adsorption capacity is 1.58 mmol/g, and after 8 times of cyclic adsorption, the amount of CO2 adsorption remained basically unchanged, both of which indicate that the material has excellent adsorption properties and can be widely used for the adsorption of carbon dioxide.

8.
J Opt Soc Am B ; 38(5): 1579-1585, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34385758

RESUMO

The guided-modes of Bloch surface waves, such as the transverse electric modes (TE00 and TE01 modes), can simultaneously exist in a low-refractive-index ridge waveguide with subwavelength thickness that are deposited on an all dielectric one-dimension photonic crystal. By using the finite difference frequency domain method, coupled mode theory and finite-difference time-domain method, the conversion between the guided-modes has been investigated. This conversion can be realized in a broadband wavelength with surface pattern of this low-index ridge. This conversion is useful for developing lab-on-a-chip photonic devices, such as a mode converter that can maintain the output mode purity over 90% with working wavelength ranging from 590 to 680 nm, and a power splitter that can maintain the splitting ratio over 8:2 with wavelength ranging from 530 to 710 nm.

9.
Nanophotonics ; 10(3): 1099-1106, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35330809

RESUMO

When an ultrathin silver nanowire with a diameter less than 100 nm is placed on a photonic band gap structure, surface plasmons can be excited and propagate along two side-walls of the silver nanowire. Although the diameter of the silver nanowire is far below the diffraction limit, two bright lines can be clearly observed at the image plane by a standard wide-field optical microscope. Simulations suggest that the two bright lines in the far-field are caused by the unique phase distribution of plasmons on the two side-walls of the silver nanowire. Combining with the sensing ability of surface plasmons to its environment, the configuration reported in this work is capable of functioning as a sensing platform to monitor environmental changes in the near-field region of this ultrathin nanowire.

10.
Opt Express ; 28(15): 22095-22104, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752477

RESUMO

Strong coupling between hyperbolic phonon-polaritons (HP) and magnetic polaritons (MP) is theoretically studied in a hexagonal boron nitride (hBN) covered deep silver grating structure. It is found that MP in grating trenches strongly interacts with HP in an anisotropic hBN thin film, leading to a large Rabi splitting with near-perfect dual band light absorption. Numerical results indicate that MP-HP coupling can be tuned by geometric parameters of the structure. More intriguingly, the resonantly enhanced fields for two branches of the hybrid mode demonstrate unusually different field patterns. One exhibits a volume-confined Zigzag propagation pattern in the hBN film, while the other shows a field-localization near the grating corners. Furthermore, resonance frequencies of these strongly coupled modes are very robust over a wide-angle range. The angle-insensitive strong interaction of hyperbolic-magnetic polaritons with dual band intense light absorption in this hybrid system offers a new paradigm for the development of various optical detecting, sensing and thermal emitting devices.

11.
ACS Nano ; 14(7): 9136-9144, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32649174

RESUMO

The growth in aerosol particles caused by water uptake during increasing ambient relative humidity alters the physical and chemical properties of aerosols, which then affects public health, atmospheric chemistry, and the Earth's climate. The temporal resolution and sensitivity of current techniques are not sufficient to measure the growth dynamics of single aerosol nanoparticles. Additionally, the specific time required for phase transition from solid to aqueous has not been measured. Here, we describe a label-free photonic microscope that uses the Bloch surface waves as the illumination source for imaging and sensing to provide real-time measurements of the hygroscopic growth dynamics of a single aerosol (diameter <100 nm) containing the main components of air pollution. This specific time can be measured for both pure and mixed aerosols, showing that organics will delay the phase transition. This photonic microscope can be extended to investigate physicochemical reactions of various aerosols, and then knowing this specific time will be favorable for understanding the reaction kinetics among single aerosols and the surrounding medium.

12.
Nanoscale ; 12(3): 1688-1696, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894803

RESUMO

Metallic particles are promising for applications in various areas, including optical sensing, imaging and electric field enhancement-induced optical and thermal effects. The ability to trap or transport these particles stably will be important in these applications. However, while traditional optical tweezers can trap metallic Rayleigh particles easily, it is difficult to trap metallic mesoscopic/Mie particles because of the strong scattering forces that come from the far-field trapping laser beam. Here we demonstrate that metallic particles can be trapped stably using focused Bloch surface waves that propagate in the near-field region of a dielectric multilayer structure with a photonic band gap. Focused Bloch surface waves can be excited efficiently using an annular beam with azimuthal polarization and a high-numerical-aperture objective. Numerical simulations were performed to calculate the optical forces loaded on a gold particle by focused Bloch surface waves and the results were consistent with those of the experimental observations.

13.
Phys Rev Appl ; 13(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34113692

RESUMO

Dielectric multilayer photonic-band-gap structures, called one-dimensional photonic crystals (1DPCs), have drawn considerable attention in the fields of physics, chemistry, and biophotonics. Here, experimental results verify the feasibility of a 1DPC working as a substrate for switchable manipulations of colloidal microparticles. The optically induced thermal convective force on a 1DPC can assemble colloidal particles that are dispersed in a water solution, while the photonic scattering force on the same 1DPC caused by propagating evanescent waves can guide these particles. Additionally, in the 1DPC, one internal mode can be excited that has seldom been noticed previously. This mode shows an ability to assemble particles over large areas even when the incident power is low. The assembly and guidance of colloidal particles on the 1DPC are switchable just through tuning the polarization and angle of the incident laser beam. Numerical simulations are carried out, which are consistent with these experimental observations.

14.
Sci Adv ; 5(3): eaav5335, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30944860

RESUMO

Surface plasmon resonance microscopy (SPRM) with single-direction illumination is a powerful platform for biomedical imaging because of its wide-field, label-free, and high-surface-sensitivity imaging capabilities. However, two disadvantages prevent wider use of SPRM. The first is its poor spatial resolution that can be as large as several micrometers. The second is that SPRM requires use of metal films as sample substrates; this introduces working wavelength limitations. In addition, cell culture growth on metal films is not as universally available as growth on dielectric substrates. Here we show that use of azimuthal rotation illumination allows SPRM spatial resolution to be enhanced by up to an order of magnitude. The metal film can also be replaced by a dielectric multilayer and then a different label-free surface-sensitive photonic microscopy is developed, which has more choices in terms of the working wavelength, polarization, and imaging section, and will bring opportunities for applications in biology.

15.
Phys Rev B ; 99(11)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33842743

RESUMO

In this work, the resonant coupling behaviors between the transverse-electric (TE) and transverse-magnetic (TM) Bloch surface waves (BSWs) on a dielectric multilayer have been theoretically studied. Due to the different penetration depths in the dielectric multilayer, the TM BSWs and TE BSWs can act as the radiative and dark electromagnetic modes, respectively. By using a rectangular grating on the dielectric multilayer, both Rabi splitting and Fano resonance phenomena based on the coupling of the two BSW modes were demonstrated, through tuning the period of the grating and the azimuthal angle of the incoming wave. Furthermore, by using the temporal coupled-mode theory, we show that the anti-Hermitian coupling between the two BSW modes contributes to the enhanced diffraction and the huge polarization transformation efficiency of incoming waves in the weak coupling regime.

16.
Nano Lett ; 18(2): 1152-1158, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29320635

RESUMO

Chemical-synthesized silver nanowires have been proven as an efficient architecture for plasmonic waveguides, but the high propagation loss prevents their widely applications. Here, we demonstrate that the propagation distance of the plasmons along a silver nanowire can be extended if this nanowire was placed on a dielectric multilayer substrate containing a photonic band gap but not placed on a commonly used glass substrate. The propagation distance at 630 nm wavelength can reach 16 µm, even when the silver nanowire is as thin as 90 nm in diameter. Experimental and simulation results further show that the polarization of this propagating plasmon mode was nearly parallel to the surface of the dielectric multilayer, so it can be excited by a transverse-electric polarized Bloch surface wave propagating along a polymer nanowire with diameter at only about 170 nm on the same dielectric multilayer. Numerical simulations were also carried out and are consistent with the experiment results. Our work provides a platform with which to extend the propagation distance of the plasmonic waveguide and also for the integration between photonic and plasmonic waveguides on the nanometer scale.


Assuntos
Nanofios/química , Polímeros/química , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Luz , Modelos Químicos , Nanotecnologia , Nanofios/ultraestrutura
17.
Phys Rev Appl ; 10(2)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31576366

RESUMO

Both experiments and simulations show that the polarization state and propagation path of the Bloch surface waves sustained on a dielectric multilayer, can be manipulated with the grooves inscribed on this multilayer. These grooves can be easily producible, accessible and controllable. Various nano-devices for the Bloch surface waves, such as the launcher, beam splitter, reflector, polarization rotator, and even the photonic single-pole double-throw switch, were all experimentally realized with the properly designed grooves, which are consistent with the numerical simulations. The proposed devices will be basic elements for the two-dimensional photonic system, and will find numerous applications, including integrated photonics, molecular sensing, imaging and micro-manipulation.

18.
Phys Rev Appl ; 9(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31579272

RESUMO

Polarization is an intrinsic attribute of optical waves, so manipulating the polarization state of optical surface waves can be of a fundamental importance for the next-generation information and bio-photonics technology. Here, we show theoretically that the polarization of the Bloch surface wave (BSW) on a dielectric multilayer can be transformed between a transverse-electric (TE) state and a transverse-magnetic (TM) state by using the laterally continuous grooves inscribed on this multilayer. This polarization transformation can be enhanced or inhibited by the interference between the reflected BSW beams, which can be tuned by the periodicity and depth of the grooves. The maximum polarization transformation efficiency can be achieved as high as 43% when the number of grooves is increased to 10. A generalized Fresnel formula is proposed to describe the polarization transformation of the BSW beams. Due to this polarization transformation, an anomalous reflection of BSW beams can be realized, which is the inequality between the incident angle and the reflection angle.

19.
Appl Sci (Basel) ; 8(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31588365

RESUMO

Experiments and numerical simulations demonstrate that when a silver nanowire is placed on a dielectric multilayer, but not the commonly used bare glass slide, the effective refractive index of the propagating surface plasmons along the silver nanowire can be controlled. Furthermore, by increasing the thickness of the top dielectric layer, longer wavelength light can also propagate along a very thin silver nanowire. In the experiment, the diameter of the silver nanowire can be as thin as 70 nm, with the incident wavelength as long as 640 nm. The principle of this control is analysed from the existence of a photonic band gap and the Bloch surface wave with this dielectric multilayer substrate.

20.
Methods Appl Fluoresc ; 6(2): 024003, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29119946

RESUMO

Fluorescent samples typically emit isotropically in all directions. Large lenses and other optical components are needed to capture a significant fraction of the emission, and complex confocal microscopes are required for high resolution focal-plane imaging. It is known that Bessel beams have remarkable properties of being able to travel over long distances, over 1000 times the wavelength, without diverging, and hence are called non-diffracting beams. In previous reports the Bessel beams were formed by an incident light source, typically with plane-wave illumination on a circular aperture. It was not known if Bessel beams could form from fluorescent light sources. We demonstrate transformation of the emission from fluorescent polystyrene spheres (FPS) into non-diverging beams which propagate up to 130 mm (13 cm) along the optical axis with a constant diameter. This is accomplished using a planar metal film, with no nanoscale features in the X-Y plane, using surface plasmon-coupled emission. Using samples which contain many FPS in the field-of-view, we demonstrate that an independent Bessel beam can be generated from any location on the metal film. The extremely long non-diffracted propagation distances, and self-healing properties of Bessel beams, offer new opportunities in fluorescence sensing and imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA