Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107096, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37408686

RESUMO

Floods occur more frequently in the context of climate change; however, flood monitoring capacity has not been well established. Here, we used a synergic mapping framework to characterize summer floods in the middle and lower reaches of the Yangtze River Plain and the effects on croplands in 2020, from both flood extent and intensity perspectives. We found that the total flood extent was 4936 km2 from July to August, and for flood intensity, 1658, 1382, and 1896 km2 of areas experienced triple, double, and single floods. A total of 2282 km2 croplands (46% of the flooded area) were inundated mainly from Poyang and Dongting Lake Basins, containing a high ratio of moderate damage croplands (47%). The newly increased flooding extent in 2020 was 29% larger than the maximum ever-flooded extent in 2015-2019. This study is expected to provide a reference for rapid regional flood disaster assessment and serving mitigation.

2.
Sci Data ; 5: 170204, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360105

RESUMO

This paper conducts a novel study in China's Jing-Jin-Ji region to investigate the determinants of population distribution and short-term migration based on a comprehensive dataset including traditional census data, earth observation data, and emerging Internet data. Our results show that due to the high level of urbanization in this region, natural conditions are no longer the strongest determinants of population distribution. New transportation modes, such as high-speed rail, have arisen as a significant determinant of population distribution and short-term migration, particularly in large cities. Socio-economic factors such as GDP, investment, urbanization level, and technology, which are traditionally assumed to govern population distribution and short-term migration, have less influence although education still remains an important factor affecting population distribution. These findings will contribute valuable information to regional planning decision-making in the Jing-Jin-Ji region.


Assuntos
Dinâmica Populacional , China , Conjuntos de Dados como Assunto , Processamento Eletrônico de Dados , Humanos , Meios de Transporte , População Urbana , Urbanização
4.
Sci Data ; 3: 160047, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377410

RESUMO

Spatio-temporal data on human population and its driving factors is critical to understanding and responding to population problems. Unfortunately, such spatio-temporal data on a large scale and over the long term are often difficult to obtain. Here, we present a dataset on Chinese population distribution and its driving factors over a remarkably long period, from 1949 to 2013. Driving factors of population distribution were selected according to the push-pull migration laws, which were summarized into four categories: natural environment, natural resources, economic factors and social factors. Natural environment and natural resources indicators were calculated using Geographic Information System (GIS) and Remote Sensing (RS) techniques, whereas economic and social factors from 1949 to 2013 were collected from the China Statistical Yearbook and China Compendium of Statistics from 1949 to 2008. All of the data were quality controlled and unified into an identical dataset with the same spatial scope and time period. The dataset is expected to be useful for understanding how population responds to and impacts environmental change.


Assuntos
Demografia , China , Meio Ambiente , Sistemas de Informação Geográfica , Humanos
5.
Ying Yong Sheng Tai Xue Bao ; 23(7): 1883-90, 2012 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-23173463

RESUMO

With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Teóricos , Solo , Abastecimento de Água , China , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA