Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 117: 154917, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301184

RESUMO

OBJECTIVE: Multiple sclerosis (MS) is an immune disease in the central nervous system (CNS) associated with Th17 cells. Moreover, STAT3 initiates Th17 cell differentiation and IL-17A expression through facilitating RORγt in MS. Here, we reported that magnolol, isolated from Magnolia officinalis Rehd. Et Wils, was regarded as a candidate for MS treatment verified by both in vitro and in vivo studies. METHODS: In vivo, experimental autoimmune encephalomyelitis (EAE) model in mice was employed to evaluate the alleviation of magnolol on myeloencephalitis. In vitro, FACS assay was employed to evaluate the effect of magnolol on Th17 and Treg cell differentiation and IL-17A expression; network pharmacology-based study was applied to probe the involved mechanisms; western blotting, immunocytochemistry, and luciferase reporter assay was used to further confirm the regulation of magnolol on JAK/STATs signaling pathway; surface plasmon resonance (SPR) assay and molecular docking were applied to manifest affinity with STAT3 and binding sites; overexpression of STAT3 was employed to verify whether magnolol attenuates IL-17A through STAT3 signaling pathway. RESULTS: In vivo, magnolol alleviated loss of body weight and severity of EAE mice; magnolol improved lesions in spinal cords and attenuated CD45 infiltration, and serum cytokines levels; correspondingly, magnolol focused on inhibiting Th17 differentiation and IL-17A expression in splenocyte of EAE mice; moreover, magnolol selectively inhibited p-STAT3(Y705) and p-STAT4(Y693) of both CD4+ and CD8+ T cells in splenocyte of EAE mice. In vitro, magnolol selectively inhibited Th17 differentiation and IL-17A expression without impact on Treg cells; network pharmacology-based study revealed that magnolol perhaps diminished Th17 cell differentiation through regulating STAT family members; western blotting further confirmed that magnolol inhibited p-JAK2(Y1007) and selectively antagonized p-STAT3(Y705) and slightly decreased p-STAT4(Y693); magnolol antagonized both STAT3 nucleus location and transcription activity; magnolol had a high affinity with STAT3 and the specific binding site perhaps to be at SH2 domain; overexpression of STAT3 resulted in failed inhibition of magnolol on IL-17A. CONCLUSION: Magnolol selectively inhibited Th17 differentiation and cytokine expression through selectively blocking of STAT3 resulting in decreased the ratio of Th17/Treg cells for treating MS, suggesting that the potential of magnolol for treating MS as novel STAT3 inhibitor.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Esclerose Múltipla/tratamento farmacológico , Células Th17 , Interleucina-17/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Simulação de Acoplamento Molecular , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Células Th1
2.
Chemistry ; 23(45): 10906-10914, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28594098

RESUMO

Accurate identification of the molecular targets of bioactive small molecules is a highly important yet challenging task in biomedical research. Previously, a method named DPAL (DNA-programmed affinity labeling) for labeling and identifying the cellular targets of small molecules and nucleic acids was developed. Herein, DPAL is applied for the target identification of Alisertib (MLN8237), which is a highly specific aurora kinase A (AKA) inhibitor and a drug candidate being tested in clinical trials for cancer treatment. Apart from the well-established target of AKA, several potential new targets of MLN8237 were identified. Among them, p38 mitogen-activated protein kinase (p38) and laminin receptor (LAMR) were validated to be implicated in the anticancer activities of MLN8237. Interestingly, these new targets were not identified with non-DNA-based affinity probes. This work may facilitate an understanding of the molecular basis of the efficacy and side effects of MLN8237 as a clinical drug candidate. On the other hand, this work has also demonstrated that the method of DPAL could be a useful tool for target identification of bioactive small molecules.


Assuntos
Azepinas/química , DNA/química , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Marcadores de Afinidade , Antineoplásicos/química , Antineoplásicos/metabolismo , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Azepinas/metabolismo , Sítios de Ligação , Linhagem Celular , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Pirimidinas/metabolismo , Receptores de Laminina/antagonistas & inibidores , Receptores de Laminina/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Anal Bioanal Chem ; 408(19): 5359-67, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27225174

RESUMO

Identification of bioactive compounds directly from complex herbal extracts is a key issue in the study of Chinese herbs. The present study describes the establishment and application of a sensitive, efficient, and convenient method based on surface plasmon resonance (SPR) biosensors for screening active ingredients targeting tumor necrosis factor receptor type 1 (TNF-R1) from Chinese herbs. Concentration-adjusted herbal extracts were subjected to SPR binding assay, and a remarkable response signal was observed in Rheum officinale extract. Then, the TNF-R1-bound ingredients were recovered, enriched, and analyzed by UPLC-QTOF/MS. As a result, physcion-8-O-ß-D-monoglucoside (PMG) was identified as a bioactive compound, and the affinity constant of PMG to TNF-R1 was determined by SPR affinity analysis (K D = 376 nM). Pharmacological assays revealed that PMG inhibited TNF-α-induced cytotoxicity and apoptosis in L929 cells via TNF-R1. Although PMG was a trace component in the chemical constituents of the R. officinale extract, it had considerable anti-inflammatory activities. It was found for the first time that PMG was a ligand for TNF receptor from herbal medicines. The proposed SPR-based screening method may prove to be an effective solution to analyzing bioactive components of Chinese herbs and other complex drug systems. Graphical abstract Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them. Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them.


Assuntos
Técnicas Biossensoriais/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Espectroscopia de Ressonância Magnética/instrumentação , Mapeamento de Interação de Proteínas/métodos , Receptores do Fator de Necrose Tumoral/química , Ressonância de Plasmônio de Superfície/instrumentação , Sítios de Ligação , Técnicas Biossensoriais/métodos , Descoberta de Drogas/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Extratos Vegetais/química , Plantas Medicinais/química , Ligação Proteica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA