Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(7): 11358-11368, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33729770

RESUMO

Although colloidal lead halide perovskite quantum dots (PQDs) exhibit desirable emitter characteristics with high quantum yields and narrow bandwidths, instability has limited their applications in devices. In this paper, we describe spray-synthesized CsPbI3 PQD quantum emitters displaying strong photon antibunching and high brightness at room temperature and stable performance under continuous excitation with a high-intensity laser for more than 24 h. Our PQDs provided high single-photon emission rates, exceeding 9 × 106 count/s, after excluding multiexciton emissions and strong photon antibunching, as confirmed by low values of the second-order correlation function g(2)(0) (reaching 0.021 and 0.061 for the best and average PQD performance, respectively). With such high brightness and stability, we applied our PQDs as quantum random number generators, which demonstrably passed all of the National Institute of Standards and Technology's randomness tests. Intriguingly, all of the PQDs exhibited self-healing behavior and restored their PL intensities to greater than half of their initial values after excitation at extremely high intensity. Half of the PQDs even recovered almost all of their initial PL intensity. The robust properties of these spray-synthesized PQDs resulted from high crystallinity and good ligand encapsulation. Our results suggest that spray-synthesized PQDs have great potential for use in future quantum technologies (e.g., quantum communication, quantum cryptography, and quantum computing).

2.
Nanotechnology ; 22(47): 475401, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22048156

RESUMO

GaN nanowires (NWs) were synthesized through a vapor-liquid-solid (VLS) process. Based on structural analysis, the c-axis of the NW was confirmed to be perpendicular to the growth direction. Nanogenerators (NGs) fabricated by rational assembly of the GaN NWs produced an output voltage up to 1.2 V and output current density of 0.16 µA cm⁻². The measured performance of the GaN NGs was consistent with the calculations using finite element analysis (FEA).

3.
Nano Lett ; 11(7): 2753-8, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21657260

RESUMO

We report the critical effects of oxide on the growth of nanostructures through silicide formation. Under an in situ ultrahigh vacuum transmission electron microscope, it is observed from the conversion of Si nanowires into the metallic PtSi grains epitaxially through controlled reactions between lithographically defined Pt pads and Si nanowires. With oxide, instead of contact area, single crystal PtSi grains start forming either near the center between two adjacent pads or from the ends of Si nanowires, resulting in the heterostructure formation of Si/PtSi/Si. Without oxide, transformation from Si into PtSi begins at the contact area between them, resulting in the heterostructure formation of PtSi/Si/PtSi. The nanowire heterostructures have an atomically sharp interface with epitaxial relationships of Si(20-2)//PtSi(10-1) and Si[111]//PtSi[111]. Additionally, it has been observed that the existence of oxide significantly affects not only the growth position but also the growth behavior and the growth rate by two orders of magnitude. Molecular dynamics simulations have been performed to support our experimental results and the proposed growth mechanisms. In addition to fundamental science, the significance of the study matters for future processing techniques in nanotechnology and related applications as well.


Assuntos
Nanofios/química , Óxidos/química , Platina/química , Nanotecnologia , Tamanho da Partícula , Semicondutores , Silício/química , Propriedades de Superfície
4.
Nano Lett ; 8(8): 2194-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18616326

RESUMO

The formation of CoSi and CoSi2 in Si nanowires at 700 and 800 degrees C, respectively, by point contact reactions between nanodots of Co and nanowires of Si have been investigated in situ in a ultrahigh vacuum high-resolution transmission electron microscope. The CoSi2 has undergone an axial epitaxial growth in the Si nanowire and a stepwise growth mode was found. We observed that the stepwise growth occurs repeatedly in the form of an atomic step sweeping across the CoSi2/Si interface. It appears that the growth of a new step or a new silicide layer requires an independent event of nucleation. We are able to resolve the nucleation stage and the growth stage of each layer of the epitaxial growth in video images. In the nucleation stage, the incubation period is measured, which is much longer than the period needed to grow the layer across the silicide/Si interface. So the epitaxial growth consists of a repeating nucleation and a rapid stepwise growth across the epitaxial interface. This is a general behavior of epitaxial growth in nanowires. The axial heterostructure of CoSi2/Si/CoSi2 with sharp epitaxial interfaces has been obtained. A discussion of the kinetics of supply limited and source-limited reaction in nanowire case by point contact reaction is given. The heterostructures are promising as high performance transistors based on intrinsic Si nanowires.


Assuntos
Cobalto/química , Nanofios/química , Nanofios/ultraestrutura , Silício/química , Microscopia Eletrônica de Transmissão
5.
Nano Lett ; 8(3): 913-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18266331

RESUMO

We report the formation of PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices from such heterostructures. Scanning electron microscopy studies show that silicon nanowires can be converted into PtSi nanowires through controlled reactions between lithographically defined platinum pads and silicon nanowires. High-resolution transmission electron microscopy studies show that PtSi/Si/PtSi heterostructure has an atomically sharp interface with epitaxial relationships of Si[110]//PtSi[010] and Si(111)//PtSi(101). Electrical measurements show that the pure PtSi nanowires have low resistivities approximately 28.6 microOmega.cm and high breakdown current densities>1x10(8) A/cm2. Furthermore, using single crystal PtSi/Si/PtSi nanowire heterostructures with atomically sharp interfaces, we have fabricated high-performance nanoscale field-effect transistors from intrinsic silicon nanowires, in which the source and drain contacts are defined by the metallic PtSi nanowire regions, and the gate length is defined by the Si nanowire region. Electrical measurements show nearly perfect p-channel enhancement mode transistor behavior with a normalized transconductance of 0.3 mS/microm, field-effect hole mobility of 168 cm2/V.s, and on/off ratio>10(7), demonstrating the best performing device from intrinsic silicon nanowires.

6.
Nano Lett ; 7(8): 2389-94, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17604405

RESUMO

Nanoheterostructures of NiSi/Si/NiSi in which the length of the Si region can be controlled down to 2 nm have been produced using in situ point contact reaction between Si and Ni nanowires in an ultrahigh vacuum transmission electron microscope. The Si region was found to be highly strained (more than 12%). The strain increases with the decreasing Si layer thickness and can be controlled by varying the heating temperature. It was observed that the Si nanowire is transformed into a bamboo-type grain of single-crystal NiSi from both ends following the path with low-activation energy. We propose the reaction is assisted by interstitial diffusion of Ni atoms within the Si nanowire and is limited by the rate of dissolution of Ni into Si at the point contact interface. The rate of incorporation of Ni atoms to support the growth of NiSi has been measured to be 7 x 10(-4) s per Ni atom. The nanoscale epitaxial growth rate of single-crystal NiSi has been measured using high-resolution lattice-imaging videos. On the basis of the rate, we can control the consumption of Si and, in turn, the dimensions of the nanoheterostructure down to less than 2 nm, thereby far exceeding the limit of conventional patterning process. The controlled huge strain in the controlled atomic scale Si region, potential gate of Si nanowire-based transistors, is expected to significantly impact the performance of electronic devices.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Níquel/química , Compostos de Silício/química , Silício/química , Força Compressiva , Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
7.
Small ; 2(1): 116-20, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17193566

RESUMO

Beaklike SnO2 nanorods were synthesized by a vapor-liquid-solid approach using Au as a catalyst. The nanorods grow along the [10 1] direction and the beak is formed by switching the growth direction to [1 12] through controlling the growth conditions at the end of the synthesis. The photoluminescence (PL) spectrum of the nanorods exhibits visible light emission with a peak at 602 nm. The field-emission (FE) properties of the nanorods have been measured to exhibit a turn-on field of 5.8 V microm(-1). A comparative study of FE measurements between SnO2 nanorods with uniform diameters and these beaklike nanorods suggests that the shape and curved tips are important factors in determining the FE properties.


Assuntos
Cristalização/métodos , Luminescência , Medições Luminescentes/métodos , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Compostos de Estanho/química , Relação Dose-Resposta à Radiação , Luz , Teste de Materiais , Conformação Molecular , Nanotubos/efeitos da radiação , Tamanho da Partícula , Fotoquímica/métodos , Doses de Radiação , Propriedades de Superfície , Compostos de Estanho/efeitos da radiação
8.
J Phys Chem B ; 110(1): 50-3, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16471497

RESUMO

An approach is demonstrated for growing aligned ZnO nanowire/nanorod arrays following a predesigned pattern and feature with controlled site, shape, distribution, and orientation. The technique relies on an integration of atomic force microscopy (AFM) nanomachining with catalytically activated vapor-liquid-solid (VLS) growth. The pattern and growth locations are defined by the catalyst distribution created by AFM, and the orientation is determined by the epitaxial growth on a single-crystal substrate. The technique opens a variety of possibilities of using nanowire arrays as sensor arrays, piezoelectric antenna arrays, nanolasers, photonic band gap crystal, biosensors, and field emitters with controlled density, location, shape, and distribution according to a designed pattern and feature.

9.
J Am Chem Soc ; 127(47): 16376-7, 2005 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-16305207

RESUMO

Large-scale Ni-doped ZnO nanowire (NW) arrays are grown. The electrical conductivity of a single Ni-doped ZnO NW has been increased for 30 times. The photoluminescence (PL) spectrum of the doped ZnO NWs has a red shift, suggesting possible doping induced band edge bending. The doped NW arrays could be the basis for building integrated nanoscale transistors, sensors, and photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA