Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 18(1): 2211852, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37183693

RESUMO

Root rot is one of the main diseases affecting Aconitum carmichaelii Debx. during cultivation, seriously limiting yields of this herb. Currently, there is no effective control measure for aconite root rot. The antifungal activities of antagonistic strains against aconite root rot pathogens (Fusarium proliferatum, Fusarium solani, and Fusarium oxysporum) were investigated in this study. Three antagonistic strains, JKT7, JKT28 and JKT39, were screened and identified as Trichoderma asperellum, Trichoderma hamatum and Trichoderma virens, respectively. Dual culture tests showed that the inhibition rates of the three Trichoderma strains on the pathogens were all approximately 70%. The volatile metabolites had inhibitory effects on the mycelial growth of pathogens, while the nonvolatile metabolites in the culture filtrates did not show significant inhibitory effects. The volatile components analyzed by GC‒MS were mainly ketones, esters, and alcohols. These results indicate that these strains of Trichoderma and their secondary metabolites have antimicrobial activities against the pathogens of aconite root rot. This study could provide a scientific basis for the biocontrol of aconite root rot.


Assuntos
Aconitum , Fusarium , Trichoderma , Antifúngicos/farmacologia , Aconitum/microbiologia , Fusarium/fisiologia , Trichoderma/fisiologia , Doenças das Plantas/microbiologia
2.
Food Chem ; 413: 135640, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758385

RESUMO

Here, a smartphone-assisted dual-color ratiometric fluorescence smart gel label-based visual sensing platform was constructed for real-time evaluation of the freshness of agro-food based on the biogenic amines responses. Green-emission fluorescence carbon dots (CDs) coupled with blue-emission fluorescence bimetallic metal-organic framework (Fe/Zr-MOF) obtained dual-color CDs@Fe/Zr-MOF fluorescence nanoprobe acts as the response units. With the increase of SP and HIS content, the green fluorescence of CDs was enhanced, while the blue fluorescence of Fe/Zr-MOF was quenched. Therefore, this dual-color probe achieved a clear fluorescence color response to biogenic amines. The nanoprobe possessed sensitive and color-responsive with the LODs of 0.17 µM for SP and 2.95 µM for HIS in a wide range of 0-937.5 µM, respectively. Besides, these fluorescent nanoprobes were immobilized on the hydrogel carrier, and the intelligent fluorescent hydrogel tag can be obtained after freeze-drying, which realizes the real-time qualitative monitoring of SP and HIS in pork and shrimp samples.


Assuntos
Aprendizado Profundo , Pontos Quânticos , Smartphone , Limite de Detecção , Alimentos Marinhos , Hidrogéis , Corantes Fluorescentes , Carbono
3.
Artigo em Inglês | MEDLINE | ID: mdl-36750421

RESUMO

An optical monitoring device combining a smartphone with a polychromatic ratiometric fluorescence-colorimetric paper sensor was developed to detect Hg2+ and S2- in water and seafood. This monitoring included the detection of food deterioration and was made possible by processing the sensing data with a machine learning algorithm. The polychromatic fluorescence sensor was composed of blue fluorescent carbon quantum dots (CDs) (BU-CDs) and green and red fluorescent CdZnTe quantum dots (QDs) (named GN-QDs and RD-QDs, respectively). The experimental results and density functional theory (DFT) prove that the incorporation of Zn can improve the stability and quantum yield of CdZnTe QDs. According to the dynamic and static quenching mechanisms, GN-QDs and RD-QDs were quenched by Hg2+ and sulfide, respectively, but BU-CDs were not sensitive to them. The system colors change from green to red to blue as the concentration of the two detectors rises, and the limits of detection (LOD) were 0.002 and 1.488 µM, respectively. Meanwhile, the probe was combined with the hydrogel to construct a visual sensing intelligent test strip, which realized the monitoring of food freshness. In addition, a smartphone device assisted by multiple machine learning methods was used to text Hg2+ and sulfide in real samples. It can be concluded that the fabulous stability, sensitivity, and practicality exhibited by this sensing mechanism give it unlimited potential for assessing the contents of toxic and hazardous substances Hg2+ and sulfide.

4.
Nature ; 613(7943): 324-331, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599989

RESUMO

Pathogens generate ubiquitous selective pressures and host-pathogen interactions alter social behaviours in many animals1-4. However, very little is known about the neuronal mechanisms underlying pathogen-induced changes in social behaviour. Here we show that in adult Caenorhabditis elegans hermaphrodites, exposure to a bacterial pathogen (Pseudomonas aeruginosa) modulates sensory responses to pheromones by inducing the expression of the chemoreceptor STR-44 to promote mating. Under standard conditions, C. elegans hermaphrodites avoid a mixture of ascaroside pheromones to facilitate dispersal5-13. We find that exposure to the pathogenic Pseudomonas bacteria enables pheromone responses in AWA sensory neurons, which mediate attractive chemotaxis, to suppress the avoidance. Pathogen exposure induces str-44 expression in AWA neurons, a process regulated by a transcription factor zip-5 that also displays a pathogen-induced increase in expression in AWA. STR-44 acts as a pheromone receptor and its function in AWA neurons is required for pathogen-induced AWA pheromone response and suppression of pheromone avoidance. Furthermore, we show that C. elegans hermaphrodites, which reproduce mainly through self-fertilization, increase the rate of mating with males after pathogen exposure and that this increase requires str-44 in AWA neurons. Thus, our results uncover a causal mechanism for pathogen-induced social behaviour plasticity, which can promote genetic diversity and facilitate adaptation of the host animals.


Assuntos
Caenorhabditis elegans , Feromônios , Pseudomonas aeruginosa , Reprodução , Comportamento Sexual Animal , Animais , Feminino , Masculino , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Glicolipídeos/metabolismo , Organismos Hermafroditas/fisiologia , Feromônios/metabolismo , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Receptores de Feromônios/metabolismo , Reprodução/fisiologia , Células Receptoras Sensoriais/metabolismo
5.
J Hazard Mater ; 426: 128091, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952493

RESUMO

Azodicarbonamide (ADA) in flour can be easily decomposed to semi-carbazide and biuret, exhibiting strong genotoxicity in vitro and carcinogenicity. Glutathione (GSH) can be conjugated with some ketone-containing compounds and unsaturated aldehydes to form toxic metabolites. Here, a novel ratio fluorescence probe based on blue emitting biomass-derived carbon dots (BCDs) and yellow emitting 2,3-diaminophenazine (OxOPD) was prepared for the bifunctional determination of glutathione (GSH) and ADA. This strategy includes three processes: (1) Ag+ oxidizes o-phenylenediamine (OPD) to produce OxOPD. The peak at 562 nm was enhanced, and the peak at 442 nm was reduced due to fluorescence resonance energy transfer (FRET), (2) glutathione binds Ag+ and inhibits the production of OxOPD, (3) ADA oxidizes GSH to form GSSG, resulting in the release of Ag+ by GSH. Therefore, the newly designed ratio fluorescence probe can be based on the intensity ratio (I442/I562) changes and significant fluorescent color changes to detect GSH and ADA. Moreover, a smartphone WeChat applet and a yolov3-assisted deep learning classification model have been developed to quickly detect GSH and ADA on-site based on an image processing algorithm. These results indicate that smartphone ratiometric fluorescence sensing combined with machine learning has broad prospects for biomedical analysis.


Assuntos
Pontos Quânticos , Smartphone , Compostos Azo , Corantes Fluorescentes , Glutationa , Limite de Detecção , Aprendizado de Máquina , Impressão Tridimensional
6.
Mikrochim Acta ; 188(5): 157, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33825047

RESUMO

To provide the basis for clinical diagnosis in an emergency case, a portable smartphone device-based multi-signal sensing system for on-site determination of alkaline phosphatase (ALP) is introduced. In this system, cobalt hydroxide (CoOOH) nanoflakes can oxidize O-phenylenediamine (OPD) to produce 2,3-diaminophenazine (OxOPD), resulting in a strong fluorescence at 565 nm and an absorbance at 420 nm, respectively. The ascorbic acid 2-phosphate (AAP) can be hydrolyzed by alkaline phosphatase (ALP) to yield ascorbic acid (AA). Then, AA reduces the CoOOH nanoflakes to produce Co2+, and AA is oxidized to form dehydroascorbic acid (DHAA), thereby inhibiting the formation of OxOPD. The reaction product DHAA further combines with OPD to yield 3-(1,2-dihydroxyethyl)furo[3,4-b]quinoxalin-1(3H)-one (DFQ) accompanied by a strong fluorescence at 430 nm. Based on this, the fluorometric assay for ALP has a wide linear range from 0.8 to 190 U/L with a low detection limit of 0.16 U/L, and the colorimetric assay from 3 to 130 U/L with a detection limit of 1.94 U/L. Moreover, a portable smartphone sensing platform integrated with fluorescent and colorimetric signals was established for rapid determination of ALP without spectrometers. Recoveries of 97-104% for spiked samples and relative standard deviations (RSD) of less than 2% (n = 3) confirmed the feasibility of the developed platform in complicated samples, opening up new horizons for on-site evaluation in the biomedical field.


Assuntos
Fosfatase Alcalina/sangue , Colorimetria/métodos , Smartphone , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Cobalto/química , Colorimetria/instrumentação , Corantes Fluorescentes/química , Humanos , Hidróxidos/química , Limite de Detecção , Nanopartículas Metálicas/química , Oxirredução , Fenilenodiaminas/química , Testes Imediatos
7.
Genes Dev ; 35(7-8): 528-541, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737385

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.


Assuntos
Neoplasias Pulmonares/fisiopatologia , Survivina/genética , Survivina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Camundongos , Mutação , Metástase Neoplásica , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA