Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231016

RESUMO

Mangrove ecosystems are vulnerable to rising sea levels as the plants are exposed to high salinity and tidal submergence. The ways in which these plants respond to varying salinities, immersion depths, and levels of light irradiation are poorly studied. To understand photosynthesis in response to salinity and submergence in mangroves acclimated to different tidal elevations, two-year-old seedlings of two native mangrove species, Kandelia obovata and Rhizophora stylosa, were treated at different salinity concentrations (0, 10, and 30 part per thousand, ppt) with and without immersion conditions under fifteen photosynthetic photon flux densities (PPFD µmol photon·m-2·s-1). The photosynthetic capacity and the chlorophyll fluorescence (ChlF) parameters of both species were measured. We found that under different PPFDs, electron transport rate (ETR) induction was much faster than photosynthetic rate (Pn) induction, and Pn was restricted by stomatal conductance (Gs). The Pn of the immersed K. obovata plants increased, indicating that this species is immersed-tolerant, whereas the Pn level of the R. stylosa plants is salt-tolerant with no immersion. All of the plants treated with 30 ppt salinity exhibited lower Pn but higher non-photochemical quenching (NPQ) and heat quenching (D) values, followed by increases in the excess energy and photoprotective effects. Since NPQ or D can be easily measured in the field, these values provide a useful ecological monitoring index that may provide a reference for mangrove restoration, habitat creation, and ecological monitoring.


Assuntos
Rhizophoraceae , Clorofila/farmacologia , Ecossistema , Fotossíntese , Folhas de Planta/fisiologia , Rhizophoraceae/fisiologia , Salinidade
2.
BMC Genomics ; 13 Suppl 1: S9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22369214

RESUMO

BACKGROUND: Plant non-specific lipid transfer proteins (nsLTPs) are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defence activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. METHODS: In this study, we identified 595 nsLTPs from 121 different species and constructed an nsLTPs database--nsLTPDB--which comprises the sequence information, structures, relevant literatures, and biological data of all plant nsLTPs http://nsltpdb.life.nthu.edu.tw/. RESULTS: Meanwhile, bioinformatics and statistics methods were implemented to develop a classification method for nsLTPs based on the patterns of the eight highly-conserved cysteine residues, and to suggest strict Prosite-styled patterns for Type I and Type II nsLTPs. The pattern of Type I is C X2 V X5-7 C [V, L, I] × Y [L, A, V] X8-13 CC × G X12 D × [Q, K, R] X2 CXC X16-21 P X2 C X13-15C, and that of Type II is C X4 L X2 C X9-11 P [S, T] X2 CC X5 Q X2-4 C[L, F]C X2 [A, L, I] × [D, N] P X10-12 [K, R] X4-5 C X3-4 P X0-2 C. Moreover, we referred the Prosite-styled patterns to the experimental mutagenesis data that previously established by our group, and found that the residues with higher conservation played an important role in the structural stability or lipid binding ability of nsLTPs. CONCLUSIONS: Taken together, this research has suggested potential residues that might be essential to modulate the structural and functional properties of plant nsLTPs. Finally, we proposed some biologically important sites of the nsLTPs, which are described by using a new Prosite-styled pattern that we defined.


Assuntos
Proteínas de Transporte/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo , Modelos Estatísticos
3.
Sensors (Basel) ; 11(2): 1794-809, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22319382

RESUMO

Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr(-1). Bare land grew by 1,594.66 ha yr(-1) on average. In contrast, cropland decreased by 3,286.26 ha yr(-1) on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr(-1), 903.43 ha yr(-1), and 315.72 ha yr(-1) on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city's huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed.


Assuntos
Cidades , Planejamento de Cidades/métodos , Conservação dos Recursos Naturais , Políticas , Crescimento Demográfico , Urbanização , Agricultura , China , Geografia , Produto Interno Bruto , Humanos , Indústrias , Tecnologia de Sensoriamento Remoto
4.
Proteins ; 70(3): 695-706, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17729272

RESUMO

Plant nonspecific lipid transfer protein 2 (nsLTP2) is a small (7 kDa) protein that binds lipid-like ligands. An inner hydrophobic cavity surrounded by alpha-helices is the defining structural feature of nsLTP2. Although nsLTP2 structures have been reported earlier, the detailed mechanisms of ligand binding and lipid transfer remain unclear. In this study, we used site-directed mutagenesis to determine the role of various hydrophobic residues (L8, I15, F36, F39, Y45, Y48, and V49) in the structure, stability, ligand binding, and lipid transfer activity of rice nsLTP2. Three single mutations (L8A, F36A, and V49A) drastically alter the native tertiary structure and perturb ligand binding and lipid transfer activity. Therefore, these three residues are structurally important. The Y45A mutant, however, retains a native-like structure but has decreased lipid binding affinity and lipid transfer activity, implying that this aromatic residue is critical for these biological functions. The mutants, I15A and Y48A, exhibit quite different ligand binding affinities. Y48 is involved in planar sterol binding but not linear lysophospholipid association. As for I15A, it had the highest dehydroergosterol binding affinity in spite of the lower lipid binding and transfer abilities. Our results suggest that the long alkyl side chain of I15 would restrict the flexibility of loop I (G13-A19) for sterol entry. Finally, F39A can markedly increase the exposed hydrophobic surface to maintain its transfer efficiency despite reduced ligand binding affinity. These findings suggest that the residues forming the hydrophobic cavity play various important roles in the structure and function of rice nsLTP2.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência , Espectrometria de Fluorescência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA