Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chin Med Assoc ; 86(7): 624-626, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191943

RESUMO

Radiation is ubiquitous in nature, and radiation is also widely used in various fields of medicine, agriculture, and industry. Current biological doses below 100 mSv are called low-dose radiation (LDR). Scientists have no consensus of effects on humans below this dose, so a variety of dose-response curve theories have been derived. This approach makes the public believe that even a small dose of radiation has adverse side effects, and overreact to refuse the related medical procedures for fear of radiation. The linear non-threshold (LNT) model has been used in radiation protection for over 40 years however, adverse effects from low dose, low-dose rate (LDDR) exposures are not detectable. Nuclear molecular imaging is LDR, using different radionuclides or combining with specific ligands (carries) to form "radiopharmaceuticals" for functional or pathological evaluations of diseases. As an integral part of patient care, nuclear medicine is used in the diagnosis, management, treatment, follow-up, and prevention of diseases. Therefore, this paper discusses literature review and provides appropriate scientific data and communication to help the peers and the public understand its advantage and disadvantage.


Assuntos
Imagem Molecular , Proteção Radiológica , Humanos , Modelos Lineares , Doses de Radiação , Literatura de Revisão como Assunto
2.
Front Immunol ; 8: 790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740493

RESUMO

Enhancer of zeste homolog 2 (Ezh2) has been shown to play a role in the differentiation of T helper (Th) 1 and 2 cells in mice studies using Ezh2-deficient T cells. However, the results have been inconsistent, and the function of Ezh2 in human Th1 and Th2 cell differentiation and its association with disease remains controversial. We measured the expression of Ezh2 in Th1 and Th2 cells in peripheral blood mononuclear cells after acute challenge with house dust mite using flow cytometry in patients with allergic rhinitis (AR) and controls. The role of Ezh2 was further explored by adding the p38 inhibitor to see if this affected allergen-induced Th1 and Th2 differentiation. The expression of Ezh2 in the Th1 and Th2 cells was significantly lower in the patients than in the controls and was negatively correlated with serum IL-17A levels in the patients. Ex vivo allergen challenge resulted in rapid Th2 cell differentiation, which was negatively associated with the Ezh2 expression in Th2 cells. Inhibiting p38 activity increased the expression of Ezh2 in Th2 cells and reduced the number of differentiated Th2 cells. Our findings suggest that Ezh2 expression is potentially associated with AR development.

3.
Cancer Res ; 75(17): 3568-82, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26100670

RESUMO

Mitochondria are the powerhouses of cells. Mitochondrial C-Raf is a potential cancer therapeutic target, as it regulates mitochondrial function and is localized to the mitochondria by its N-terminal domain. However, Raf inhibitor monotherapy can induce S338 phosphorylation of C-Raf (pC-Raf(S338)) and impede therapy. This study identified the interaction of C-Raf with S308 phosphorylated DAPK (pDAPK(S308)), which together became colocalized in the mitochondria to facilitate mitochondrial remodeling. Combined use of the Raf inhibitors sorafenib and GW5074 had synergistic anticancer effects in vitro and in vivo, but targeted mitochondrial function, rather than the canonical Raf signaling pathway. C-Raf depletion in knockout MEF(C-Raf-/-) or siRNA knockdown ACHN renal cancer cells abrogated the cytotoxicity of combination therapy. Crystal structure simulation showed that GW5074 bound to C-Raf and induced a C-Raf conformational change that enhanced sorafenib-binding affinity. In the presence of pDAPK(S308), this drug-target interaction compromised the mitochondrial targeting effect of the N-terminal domain of C-Raf, which induced two-hit damages to cancer cells. First, combination therapy facilitated pC-Raf(S338) and pDAPK(S308) translocation from mitochondria to cytoplasm, leading to mitochondrial dysfunction and reactive oxygen species (ROS) generation. Second, ROS facilitated PP2A-mediated dephosphorylation of pDAPK(S308) to DAPK. PP2A then dissociated from the C-Raf-DAPK complex and induced profound cancer cell death. Increased pDAPK(S308) modification was also observed in renal cancer tissues, which correlated with poor disease-free survival and poor overall survival in renal cancer patients. Besides mediating the anticancer effect, pDAPK(S308) may serve as a predictive biomarker for Raf inhibitors combination therapy, suggesting an ideal preclinical model that is worthy of clinical translation.


Assuntos
Proteínas Quinases Associadas com Morte Celular/genética , Sinergismo Farmacológico , Neoplasias Renais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-raf/genética , Idoso , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Técnicas de Inativação de Genes , Humanos , Indóis/administração & dosagem , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Fenóis/administração & dosagem , Compostos de Fenilureia/administração & dosagem , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA