Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 773-782, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37927019

RESUMO

Objective To explore the cell subsets and characteristics related to the prognosis of osteosarcoma by analyzing the cellular composition of tumor tissue samples from different osteosarcoma patients.Methods The single-cell sequencing data and bulk sequencing data of different osteosarcoma patients were downloaded.We extracted the information of cell samples for dimensionality reduction,annotation,and cell function analysis,so as to identify the cell subsets and clarify the cell characteristics related to the prognosis of osteosarcoma.The development trajectory of macrophages with prognostic significance was analyzed,and the prognostic model of osteosarcoma was established based on the differentially expressed genes of macrophage differentiation.Results The cellular composition presented heterogeneity in the patients with osteosarcoma.The infiltration of mononuclear phagocytes in osteosarcoma had prognostic significance(P=0.003).Four macrophage subsets were associated with prognosis,and their signature transcription factors included RUNX3(+),ETS1(+),HOXD11(+),ZNF281(+),and PRRX1(+).Prog_Macro2 and Prog_Macro4 were located at the end of the developmental trajectory,and the prognostic ability of macrophage subsets increased with the progression of osteosarcoma.The prognostic model established based on the differentially expressed genes involved in macrophage differentiation can distinguish the survival rate of osteosarcoma patients with different risks(P<0.001).Conclusion Macrophage subsets are closely related to the prognosis of osteosarcoma and can be used as the key target cells for the immunotherapy of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Prognóstico , Osteossarcoma/genética , Imunoterapia , Macrófagos , Fatores de Transcrição , Neoplasias Ósseas/genética , Proteínas de Homeodomínio , Proteínas Repressoras
2.
Ying Yong Sheng Tai Xue Bao ; 27(10): 3307-3315, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-29726158

RESUMO

Northeast China is one of the most important farming regions in China, due to its great contribution to national food security. Crop production is a main source of carbon emission. To assess the differences in carbon footprints of major grain crop production will benefit the achievement of low carbon agriculture. Therefore, this study calculated the regional carbon foot prints of rice (Oryza sativa), maize (Zea mays) and soybean (Glycine max) production in Northeast China du-ring 2004-2013 using the provincial statistical data, including crop yield, sown area and production inputs. The results showed that the highest area-scale carbon footprint was found in rice production, with the average value of (2463±56) kg CE·hm-2, while the second was found in maize production during 2004-2013. The sharpest rise occurred in maize production, from 1164 kg CE·hm-2 in 2004 to 1768 kg CE·hm-2 in 2013, with the average rate of 67 kg CE·hm-2·a-1. The application of chemical fertilizer contributed to the carbon footprint largely, accounting for 45%, 90% and 83% for rice, maize and soybean, respectively. Moreover, the contribution of electricity for irrigation in rice production ranged from 29% to 42%, which was larger than that in maize and soybean production. The carbon footprints were significantly different among the three provinces of Northeast China. The highest yield-scaled carbon footprints for three crops were found in Jilin Province, while the lowest area-scaled carbon footprints found in Heilongjiang Province. Given to the large transfer of rural labor from agricultural to non-agricultural sections and the development of mechanization, diesel and other mechanical inputs would increase rapidly in the future. Therefore, improving ferti-lizer utilization, mechanical and irrigation efficiencies in crop production would be the main approaches to promoting low-carbon agriculture in Northeast China.


Assuntos
Agricultura , Pegada de Carbono , Grão Comestível/crescimento & desenvolvimento , Carbono/análise , China , Fertilizantes , Oryza/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA