Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(Suppl 10): 613, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012455

RESUMO

BACKGROUND: Glucocorticoid-remediable aldosteronism (GRA) is a form of heritable hypertension caused by a chimeric fusion resulting from unequal crossing over between 11ß-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2), which are two genes with similar sequences. Different crossover patterns of the CYP11B1 and CYP11B2 chimeric genes may be associated with a variety of clinical presentations. It is therefore necessary to develop an efficient approach for identifying the differences between the hybrid genes of a patient with GRA. RESULTS: We developed a long-read analysis pipeline named GRAde (GRA deciphering), which utilizes the nonidentical bases in the CYP11B1 and CYP11B2 genomic sequences to identify and visualize the chimeric form. We sequenced the polymerase chain reaction (PCR) products of the CYP11B1/CYP11B2 chimeric gene from 36 patients with GRA using the Nanopore MinION device and analyzed the sequences using GRAde. Crossover events were identified for 30 out of the 36 samples. The crossover sites appeared in the region exhibiting high sequence similarity between CYP11B1 and CYP11B2, and 53.3% of the cases were identified as having a gene conversion in intron 2. More importantly, there were six cases for whom the PCR products indicated a chimeric gene, but the GRAde results revealed no crossover pattern. The crossover regions were further verified by Sanger sequencing analysis. CONCLUSIONS: PCR-based target enrichment followed by long-read sequencing is an efficient and precise approach to dissecting complex genomic regions, such as those involved in GRA mutations, which could be directly applied to clinical diagnosis. The scripts of GRAde are available at https://github.com/hsu-binfo/GRAde .


Assuntos
Citocromo P-450 CYP11B2 , Hiperaldosteronismo , Esteroide 11-beta-Hidroxilase , Citocromo P-450 CYP11B2/genética , Humanos , Hiperaldosteronismo/genética , Proteínas Mutantes Quiméricas , Mutação , Esteroide 11-beta-Hidroxilase/genética
2.
Biomedicines ; 9(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440230

RESUMO

Mutated channelopathy could play important roles in the pathogenesis of aldosterone-producing adenoma (APA). In this study, we identified a somatic mutation, KCNJ5 157-159delITE, and reported its immunohistological, pathophysiological and pharmacological characteristics. We conducted patch-clamp experiments on HEK293T cells and experiments on expression of aldosterone synthase (CYP11B2) and aldosterone secretion in HAC15 cells to evaluate electrophysiological and functional properties of this mutated KCNJ5. Immunohistochemistry was conducted to identify expressions of several steroidogenic enzymes. Macrolide antibiotics and a calcium channel blocker were administrated to evaluate the functional attenuation of mutated KCNJ5 channel in transfected HAC15 cells. The interaction between macrolides and KCNJ5 protein was evaluated via molecular docking and molecular dynamics simulation analysis. The immunohistochemistry analysis showed strong CYP11B2 immunoreactivity in the APA harboring KCNJ5 157-159delITE mutation. Whole-cell patch-clamp data revealed that mutated KCNJ5 157-159delITE channel exhibited loss of potassium ion selectivity. The mutant-transfected HAC15 cells increased the expression of CYP11B2 and aldosterone secretion, which was partially suppressed by clarithromycin and nifedipine but not roxithromycin treatment. The docking analysis and molecular dynamics simulation disclosed that roxithromycin had strong interaction with KCNJ5 L168R mutant channel but not with this KCNJ5 157-159delITE mutant channel. We showed comprehensive evaluations of the KCNJ5 157-159delITE mutation which revealed that it disrupted potassium channel selectivity and aggravated autonomous aldosterone production. We further demonstrated that macrolide antibiotics, roxithromycin, could not interfere the aberrant electrophysiological properties and gain-of-function aldosterone secretion induced by KCNJ5 157-159delITE mutation.

3.
Cell Death Dis ; 12(5): 409, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33866326

RESUMO

The levels of fibroblast growth factor 23 (FGF23) rapidly increases after acute kidney injury (AKI). However, the role of FGF23 in AKI is still unclear. Here, we observe that pretreatment with FGF23 protein into ischemia-reperfusion induced AKI mice ameliorates kidney injury by promoting renal tubular regeneration, proliferation, vascular repair, and attenuating tubular damage. In vitro assays demonstrate that SDF-1 induces upregulation of its receptor CXCR4 in endothelial progenitor cells (EPCs) via a non-canonical NF-κB signaling pathway. FGF23 crosstalks with the SDF-1/CXCR4 signaling and abrogates SDF-1-induced EPC senescence and migration, but not angiogenesis, in a Klotho-independent manner. The downregulated pro-angiogenic IL-6, IL-8, and VEGF-A expressions after SDF-1 infusion are rescued after adding FGF23. Diminished therapeutic ability of SDF-1-treated EPCs is counteracted by FGF23 in a SCID mouse in vivo AKI model. Together, these data highlight a revolutionary and important role that FGF23 plays in the nephroprotection of IR-AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Células Progenitoras Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores CXCR4/metabolismo , Injúria Renal Aguda/patologia , Animais , Células Progenitoras Endoteliais/patologia , Fator de Crescimento de Fibroblastos 23 , Masculino , Camundongos , Camundongos SCID
4.
Artigo em Inglês | MEDLINE | ID: mdl-30150476

RESUMO

Inducible expression of L1 and L2 ß-lactamases is the principal mechanism responsible for ß-lactam resistance in Stenotrophomonas maltophilia Ticarcillin-clavulanate (TIM) is one of the few effective ß-lactams for S. maltophilia treatment. Clavulanate (CA) is a ß-lactamase inhibitor that specifically targets class A, C, and D ß-lactamases. In view of the presence of class B L1 ß-lactamase, it is of interest to elucidate why TIM is valid for S. maltophilia treatment. The L1-L2 allelic variation and TIM susceptibilities of 22 clinical isolates were established. Based on L1 and L2 protein sequences and TIM susceptibility, three L1-based phylogenetic clusters (L1-A, L1-B, and L1-C) and three L2-based phylogenetic clusters (L2-A, L2-B1, and L2-B2) were classified. The contribution of each L1- and L2-based phylogenetic cluster to ticarcillin (TIC) and TIM susceptibility was investigated. All the L1s and L2s tested contributed to TIC resistance. The L1s tested were inert to CA; nevertheless, the sensitivities of L2s to CA were widely different. In addition, the genetic organizations upstream of the L1 gene varied greatly in these isolates. At least three different L1 promoter structures (K279a type, D457 type, and none) were found among the 22 isolates assayed. The differences in the L1 promoter structure had a great impact on TIC-induced L1 ß-lactamase activities. Collectively, the L1 promoter activity in response to TIC challenge and L2 susceptibility to CA are critical factors determining TIM susceptibility in S. maltophilia.


Assuntos
Ácido Clavulânico/farmacologia , Variação Genética/genética , Regiões Promotoras Genéticas/genética , Stenotrophomonas maltophilia/genética , Ticarcilina/farmacologia , beta-Lactamases/genética , Alelos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Filogenia , Stenotrophomonas maltophilia/efeitos dos fármacos , beta-Lactamas/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-29760139

RESUMO

The linkage of the protease-chaperon system, SmeYZ pump, and aminoglycoside resistance was assessed in Stenotrophomonas maltophilia The clpA, clpS, clpP, and htpX genes were upregulated in response to kanamycin exposure. Of these, clpA and htpX were the primary determinants responsible for intrinsic aminoglycoside (AG) resistance. Inactivation of clpA and htpX compromised protease-mediated intrinsic aminoglycoside resistance and weakened SmeYZ pump-mediated aminoglycoside resistance, signifying HtpX and ClpA as potential AG adjuvant targets for treatment of S. maltophilia infections.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Stenotrophomonas maltophilia/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA