Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Nat Commun ; 15(1): 5852, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992018

RESUMO

The establishment of symbiotic interactions between leguminous plants and rhizobia requires complex cellular programming activated by Rhizobium Nod factors (NFs) as well as type III effector (T3E)-mediated symbiotic signaling. However, the mechanisms by which different signals jointly affect symbiosis are still unclear. Here we describe the mechanisms mediating the cross-talk between the broad host range rhizobia Sinorhizobium fredii HH103 T3E Nodulation Outer Protein L (NopL) effector and NF signaling in soybean. NopL physically interacts with the Glycine max Remorin 1a (GmREM1a) and the NFs receptor NFR5 (GmNFR5) and promotes GmNFR5 recruitment by GmREM1a. Furthermore, NopL and NF influence the expression of GmRINRK1, a receptor-like kinase (LRR-RLK) ortholog of the Lotus RINRK1, that mediates NF signaling. Taken together, our work indicates that S. fredii NopL can interact with the NF signaling cascade components to promote the symbiotic interaction in soybean.


Assuntos
Proteínas de Bactérias , Regulação da Expressão Gênica de Plantas , Glycine max , Proteínas de Plantas , Sinorhizobium fredii , Simbiose , Glycine max/microbiologia , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sinorhizobium fredii/metabolismo , Sinorhizobium fredii/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transdução de Sinais , Nodulação/genética , Plantas Geneticamente Modificadas
2.
Int J Biol Sci ; 20(9): 3497-3514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993569

RESUMO

Resistance to HER2-targeted therapy is the major cause of treatment failure in patients with HER2+ breast cancer (BC). Given the key role of immune microenvironment in tumor development, there is a lack of an ideal prognostic model that fully accounts for immune infiltration. In this study, WGCNA analysis was performed to discover the relationship between immune-related signaling and prognosis of HER2+ BC. After Herceptin-resistant BC cell lines established, transcriptional profiles of resistant cell line and RNA-sequencing data from GSE76360 cohort were analyzed for candidate genes. 85 samples of HER2+ BC from TCGA database were analyzed by the Cox regression, XGBoost and Lasso algorithm to generalize a credible immune-related prognostic index (IRPI). Correlations between the IRPI signature and tumor microenvironment were further analyzed by multiple algorithms, including single-cell RNA sequencing data analysis. Patients with high IRPI had suppressive tumor immune microenvironment and worse prognosis. The suppression of type I interferon signaling indicated by the IRPI in Herceptin-resistant HER2+ BC was validated. And we elucidated that the suppression of cGAS-STING pathway is the key determinant underlying immune escape in Herceptin-resistant BC with high IRPI. A combination of STING agonist and DS-8201 could serve as a new strategy for Herceptin-resistant HER2+ BC.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Proteínas de Membrana , Nucleotidiltransferases , Receptor ErbB-2 , Trastuzumab , Microambiente Tumoral , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Feminino , Trastuzumab/uso terapêutico , Trastuzumab/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Transdução de Sinais , Linhagem Celular Tumoral , Prognóstico , Regulação Neoplásica da Expressão Gênica
3.
Sci Rep ; 14(1): 15994, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987328

RESUMO

Mitigating pre-harvest sprouting (PHS) and post-harvest food loss (PHFL) is essential for enhancing food securrity. To reduce food loss, the use of plant derived specialized metabolites can represent a good approach to develop a more eco-friendly agriculture. Here, we have discovered that soybean seeds hidden underground during winter by Tscherskia triton and Apodemus agrarius during winter possess a higher concentration of volatile organic compounds (VOCs) compared to those remaining exposed in fields. This selection by rodents suggests that among the identified volatiles, 3-FurAldehyde (Fur) and (E)-2-Heptenal (eHep) effectively inhibit the growth of plant pathogens such as Aspergillus flavus, Alternaria alternata, Fusarium solani and Pseudomonas syringae. Additionally, compounds such as Camphene (Cam), 3-FurAldehyde, and (E)-2-Heptenal, suppress the germination of seeds in crops including soybean, rice, maize, and wheat. Importantly, some of these VOCs also prevent rice seeds from pre-harvest sprouting. Consequently, our findings offer straightforward and practical approaches to seed protection and the reduction of PHS and PHFL, indicating potential new pathways for breeding, and reducing both PHS and pesticide usage in agriculture.


Assuntos
Agricultura , Glycine max , Sementes , Compostos Orgânicos Voláteis , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/farmacologia , Animais , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Agricultura/métodos , Germinação , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Roedores/microbiologia
4.
J Agric Food Chem ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013023

RESUMO

Symbiotic nitrogen fixation carried out by the soybean-rhizobia symbiosis increases soybean yield and reduces the amount of nitrogen fertilizer that has been applied. MicroRNAs (miRNAs) are crucial in plant growth and development, prompting an investigation into their role in the symbiotic interaction of soybean with partner rhizobia. Through integrated small RNA, transcriptome, and degradome sequencing analysis, 1215 known miRNAs, 314 of them conserved, and 187 novel miRNAs were identified, with 44 differentially expressed miRNAs in soybean roots inoculated with Sinorhizobium fredii HH103 and a ttsI mutant. The study unveiled that the known miRNA gma-MIR398a-p5 was downregulated in the presence of the ttsI mutation, while the target gene of gma-MIR398a-p5, Glyma.06G007500, associated with nitrogen metabolism, was upregulated. The results of this study offer insights for breeding high-efficiency nitrogen-fixing soybean varieties, enhancing crop yield and quality.

5.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891802

RESUMO

Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Sementes , Glycine max/genética , Glycine max/metabolismo , Sementes/genética , Sementes/metabolismo , Cromossomos de Plantas/genética , Redes Reguladoras de Genes , Melhoramento Vegetal/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Transcriptoma/genética , Multiômica
6.
Clin Transl Med ; 14(6): e1735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899748

RESUMO

BACKGROUND: Mitochondrial outer membrane permeabilisation (MOMP) plays a pivotal role in cellular death and immune activation. A deeper understanding of the impact of tumour MOMP on immunity will aid in guiding more effective immunotherapeutic strategies. METHODS: A comprehensive pan-cancer dataset comprising 30 cancer-type transcriptomic cohorts, 20 immunotherapy transcriptomic cohorts and three immunotherapy scRNA-seq datasets was collected and analysed to determine the influence of tumour MOMP activity on clinical prognosis, immune infiltration and immunotherapy effectiveness. Leveraging 65 scRNA-Seq datasets, the MOMP signature (MOMP.Sig) was developed to accurately reflect tumour MOMP activity. The clinical predictive value of MOMP.Sig was explored through machine learning models. Integration of the MOMP.Sig model and a pan-cancer immunotherapy CRISPR screen further investigated potential targets to overcome immunotherapy resistance, which subsequently underwent clinical validation. RESULTS: Our research revealed that elevated MOMP activity reduces mortality risk in cancer patients, drives the formation of an anti-tumour immune environment and enhances the response to immunotherapy. This finding emphasises the potential clinical application value of MOMP activity in immunotherapy. MOMP.Sig, offering a more precise indicator of tumour cell MOMP activity, demonstrated outstanding predictive efficacy in machine-learning models. Moreover, with the assistance of the MOMP.Sig model, FOXO1 was identified as a core modulator that promotes immune resistance. Finally, these findings were successfully validated in clinical immunotherapy cohorts of skin cutaneous melanoma and triple-negative breast cancer patients. CONCLUSIONS: This study enhances our understanding of MOMP activity in immune modulation, providing valuable insights for more effective immunotherapeutic strategies across diverse tumours.


Assuntos
Imunoterapia , Membranas Mitocondriais , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Membranas Mitocondriais/metabolismo , Imunomodulação/efeitos dos fármacos
7.
World J Clin Oncol ; 15(4): 531-539, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38689626

RESUMO

Metastasis remains a major challenge in the successful management of malignant diseases. The liver is a major site of metastatic disease and a leading cause of death from gastrointestinal malignancies such as colon, stomach, and pancreatic cancers, as well as melanoma, breast cancer, and sarcoma. As an important factor that influences the development of metastatic liver cancer, alternative splicing drives the diversity of RNA transcripts and protein subtypes, which may provide potential to broaden the target space. In particular, the dysfunction of splicing factors and abnormal expression of splicing variants are associated with the occurrence, progression, aggressiveness, and drug resistance of cancers caused by the selective splicing of specific genes. This review is the first to provide a detailed summary of the normal splicing process and alterations that occur during metastatic liver cancer. It will cover the role of alternative splicing in the mechanisms of metastatic liver cancer by examining splicing factor changes, abnormal splicing, and the contribution of hypoxia to these changes during metastasis.

8.
Int J Ophthalmol ; 17(3): 528-536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721515

RESUMO

AIM: To evaluate the effectiveness and safety of early lens extraction during pars plana vitrectomy (PPV) for proliferative diabetic retinopathy (PDR) compared to those of PPV with subsequent cataract surgery. METHODS: This multicenter randomized controlled trial was conducted in three Chinese hospitals on patients with PDR, aged >45y, with mild cataracts. The participants were randomly assigned to the combined (PPV combined with simultaneously cataract surgery, i.e., phacovitrectomy) or subsequent (PPV with subsequent cataract surgery 6mo later) group and followed up for 12mo. The primary outcome was the change in best-corrected visual acuity (BCVA) from baseline to 6mo, and the secondary outcomes included complication rates and medical expenses. RESULTS: In total, 129 patients with PDR were recruited and equally randomized (66 and 63 in the combined and subsequent groups respectively). The change in BCVA in the combined group [mean, 36.90 letters; 95% confidence interval (CI), 30.35-43.45] was significantly better (adjusted difference, 16.43; 95%CI, 8.77-24.08; P<0.001) than in the subsequent group (mean, 22.40 letters; 95%CI, 15.55-29.24) 6mo after the PPV, with no significant difference between the two groups at 12mo. The overall surgical risk of two sequential surgeries was significantly higher than that of the combined surgery for neovascular glaucoma (17.65% vs 3.77%, P=0.005). No significant differences were found in the photocoagulation spots, surgical time, and economic expenses between two groups. In the subsequent group, the duration of work incapacity (22.54±9.11d) was significantly longer (P<0.001) than that of the combined group (12.44±6.48d). CONCLUSION: PDR patients aged over 45y with mild cataract can also benefit from early lens extraction during PPV with gratifying effectiveness, safety and convenience, compared to sequential surgeries.

9.
J Hazard Mater ; 472: 134568, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38749246

RESUMO

Cadmium (Cd) is a heavy metal that significantly impacts human health and the environment. Microorganisms play a crucial role in reducing heavy metal stress in plants; however, the mechanisms by which microorganisms enhance plant tolerance to Cd stress and the interplay between plants and microorganisms under such stress remain unclear. In this study, Oceanobacillus picturae (O. picturae) was isolated for interaction with soybean seedlings under Cd stress. Results indicated that Cd treatment alone markedly inhibited soybean seedling growth. Conversely, inoculation with O. picturae significantly improved growth indices such as plant height, root length, and fresh weight, while also promoting recovery in soil physiological indicators and pH. Metabolomic and transcriptomic analyses identified 157 genes related to aspartic acid, cysteine, and flavonoid biosynthesis pathways. Sixty-three microbial species were significantly associated with metabolites in these pathways, including pathogenic, adversity-resistant, and bioconductive bacteria. This research experimentally demonstrates, for the first time, the growth-promoting effect of the O. picturae strain on soybean seedlings under non-stress conditions. It also highlights its role in enhancing root growth and reducing Cd accumulation in the roots under Cd stress. Additionally, through the utilization of untargeted metabolomics, metagenomics, and transcriptomics for a multi-omics analysis, we investigated the impact of O. picturae on the soil microbiome and its correlation with differential gene expression in plants. This innovative approach unveils the molecular mechanisms underlying O. picturae's promotion of root growth and adaptation to Cd stress.


Assuntos
Cádmio , Glycine max , Plântula , Estresse Fisiológico , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/microbiologia , Glycine max/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Cádmio/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Poluentes do Solo/toxicidade , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bacillaceae/crescimento & desenvolvimento , Bacillaceae/metabolismo , Bacillaceae/genética , Bacillaceae/efeitos dos fármacos , Microbiologia do Solo
10.
Commun Biol ; 7(1): 613, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773248

RESUMO

Understanding how to increase soybean yield is crucial for global food security. The genetic and epigenetic factors influencing seed size, a major crop yield determinant, are not fully understood. We explore the role of DNA demethylase GmDMEa in soybean seed size. Our research indicates that GmDMEa negatively correlates with soybean seed size. Using CRISPR-Cas9, we edited GmDMEa in the Dongnong soybean cultivar, known for small seeds. Modified plants had larger seeds and greater yields without altering plant architecture or seed nutrition. GmDMEa preferentially demethylates AT-rich transposable elements, thus activating genes and transcription factors associated with the abscisic acid pathway, which typically decreases seed size. Chromosomal substitution lines confirm that these modifications are inheritable, suggesting a stable epigenetic method to boost seed size in future breeding. Our findings provide insights into epigenetic seed size control and suggest a strategy for improving crop yields through the epigenetic regulation of crucial genes. This work implies that targeted epigenetic modification has practical agricultural applications, potentially enhancing food production without compromising crop quality.


Assuntos
Metilação de DNA , Elementos de DNA Transponíveis , Glycine max , Sementes , Glycine max/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Elementos de DNA Transponíveis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
11.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592937

RESUMO

Soybean is the major global source of edible oils and vegetable proteins. Seed size and weight are crucial traits determining the soybean yield. Understanding the molecular regulatory mechanism underlying the seed weight and size is helpful for improving soybean genetic breeding. The molecular regulatory pathways controlling the seed weight and size were investigated in this study. The 100-seed weight, seed length, seed width, and seed weight per plant of a chromosome segment substitution line (CSSL) R217 increased compared with those of its recurrent parent 'Suinong14' (SN14). Transcriptomic and proteomic analyses of R217 and SN14 were performed at the seed developmental stages S15 and S20. In total, 2643 differentially expressed genes (DEGs) and 208 differentially accumulated proteins (DAPs) were detected at S15, and 1943 DEGs and 1248 DAPs were detected at S20. Furthermore, integrated transcriptomic and proteomic analyses revealed that mitogen-activated protein kinase signaling and cell wall biosynthesis and modification were potential pathways associated with seed weight and size control. Finally, 59 candidate genes that might control seed weight and size were identified. Among them, 25 genes were located on the substituted segments of R217. Two critical pathways controlling seed weight were uncovered in our work. These findings provided new insights into the seed weight-related regulatory network in soybean.

12.
Nat Prod Res ; : 1-8, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597194

RESUMO

Sixteen triterpenoid saponins were isolated from the roots of Bupleurum scorzonerifolium Willd., including a new triterpenoid saponin and new natural saponin that was characterised by NMR for the first time, along with 14 known triterpenoid saponins. The structures of the compounds were established by 1D and 2D NMR spectroscopy, HR-ESI-MS, and comparison with the literature. The cytotoxic activity of the compounds against 4T1 cells was determined using the CCK8 method. Compounds 9 and 6 showed the strongest cytotoxic activity with IC50 values of 2.75 ± 0.86 and 3.78 ± 0.50 µM, respectively. Compounds 2-5 and 8 showed potent cytotoxic activity. Compounds 14 and 16 showed moderate cytotoxicity.

13.
Curr Issues Mol Biol ; 46(4): 3342-3352, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38666939

RESUMO

Increasing the soybean-planting area and increasing the soybean yield per unit area are two effective solutions to improve the overall soybean yield. Northeast China has a large saline soil area, and if soybeans could be grown there with the help of isolated saline-tolerant rhizobia, the soybean cultivation area in China could be effectively expanded. In this study, soybeans were planted in soils at different latitudes in China, and four strains of rhizobia were isolated and identified from the soybean nodules. According to the latitudes of the soil-sampling sites from high to low, the four isolated strains were identified as HLNEAU1, HLNEAU2, HLNEAU3, and HLNEAU4. In this study, the isolated strains were identified for their resistances, and their acid and saline tolerances and nitrogen fixation capacities were preliminarily identified. Ten representative soybean germplasm resources in Northeast China were inoculated with these four strains, and the compatibilities of these four rhizobium strains with the soybean germplasm resources were analyzed. All four isolates were able to establish different extents of compatibility with 10 soybean resources. Hefeng 50 had good compatibility with the four isolated strains, while Suinong 14 showed the best compatibility with HLNEAU2. The isolated rhizobacteria could successfully establish symbiosis with the soybeans, but host specificity was also present. This study was a preliminary exploration of the use of salinity-tolerant rhizobacteria to help the soybean nitrogen fixation in saline soils in order to increase the soybean acreage, and it provides a valuable theoretical basis for the application of saline-tolerant rhizobia.

14.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677114

RESUMO

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Assuntos
Carvão Vegetal , Compostagem , Glicina , Glifosato , Herbicidas , Neonicotinoides , Nitrocompostos , Microbiologia do Solo , Poluentes do Solo , Estrobilurinas , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/metabolismo , Nitrocompostos/toxicidade , Estrobilurinas/metabolismo , Estrobilurinas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Carvão Vegetal/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/metabolismo , Herbicidas/toxicidade , Carbamatos/metabolismo , Carbamatos/toxicidade , Microbiota/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Pirazóis/metabolismo , Pirazóis/toxicidade , Inseticidas/metabolismo , Inseticidas/toxicidade , Biodegradação Ambiental , Solo/química , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
15.
Nat Prod Res ; : 1-8, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587148

RESUMO

Two novel phenylpropanoid amides, namely huomarenamide A (1) and huomarenamide B (2), along with twelve known compounds (3-14), were isolated from the seeds of Cannabis sativa L. The structures with absolute configurations of new compounds were unequivocally determined by spectroscopic analyses and the ECD method. The identification of the known compounds was based on a comparison of their 1D NMR data with literature references. All compounds were assessed for cytotoxic activity against LN229 cells, revealing that compounds 2, 13, and 14 exhibited significant cytotoxicity with IC50 values ranging from 9.02 to 21.26 µM.

16.
Fitoterapia ; 175: 105902, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492866

RESUMO

Seven new triterpenoids, named Adeterpenoids A-G (1-7) and eight known compounds (8-15), were isolated from 70% ethanol extract of the roots of Adenophora tetraphylla (Thub.) Fisch. The compounds from it were separated by column chromatography techniques such as silica gel, ODS, and preparative liquid chromatography. Their structures were clarified based on extensive spectral analysis (1D, 2D-NMR, HR-ESI-MS, IR, UV, and CD) and comparison with the literature. At the same time, all compounds were evaluated for their cytotoxic activity against the LN229 (human glioma cell line). The results showed that compounds 2, 5, 6, 13, and 14 had a significant inhibitory effect on LN229 cells.


Assuntos
Antineoplásicos Fitogênicos , Raízes de Plantas , Triterpenos , Raízes de Plantas/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Triterpenos/química , Estrutura Molecular , Linhagem Celular Tumoral , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , China
17.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542270

RESUMO

Soybean (Glycine max) plants first emerged in China, and they have since been established as an economically important oil crop and a major source of daily protein for individuals throughout the world. Seed emergence height is the first factor that ensures seedling adaptability to field management practices, and it is closely related to epicotyl length. In the present study, the Suinong 14 and ZYD00006 soybean lines were used as parents to construct chromosome segment substitution lines (CSSLs) for quantitative trait loci (QTL) identification. Seven QTLs were identified using two years of epicotyl length measurement data. The insertion region of the ZYD00006 fragment was identified through whole genome resequencing, with candidate gene screening and validation being performed through RNA-Seq and qPCR, and Glyma.08G142400 was ultimately selected as an epicotyl length-related gene. Through combined analyses of phenotypic data from the study population, Glyma.08G142400 expression was found to be elevated in those varieties exhibiting longer epicotyl length. Haplotype data analyses revealed that epicotyl data were consistent with haplotype typing. In summary, the QTLs found to be associated with the epicotyl length identified herein provide a valuable foundation for future molecular marker-assisted breeding efforts aimed at improving soybean emergence height in the field, with the Glyma.08G142400 gene serving as a regulator of epicotyl length, offering new insight into the mechanisms that govern epicotyl development.


Assuntos
Glycine max , Locos de Características Quantitativas , Humanos , Glycine max/genética , Mapeamento Cromossômico , Melhoramento Vegetal , Sementes/metabolismo , Mineração de Dados
18.
Free Radic Biol Med ; 214: 206-218, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369076

RESUMO

Benzoylaconitine is a natural product in the treatment of cardiovascular disease. However, its pharmacological effect, direct target protein, and molecular mechanisms for the treatment of heart failure are unclear. In this study, benzoylaconitine inhibited Ang II-induced cell hypertrophy and fibrosis in rat primary cardiomyocytes and rat fibroblasts, while attenuating cardiac function and cardiac remodeling in TAC mice. Using the limited proteolysis-mass spectrometry (LiP-MS) method, the angiotensin-converting enzyme 2 (ACE2) was confirmed as a direct binding target of benzoylaconitine for the treatment of heart failure. In ACE2-knockdown cells and ACE2-/- mice, benzoylaconitine failed to ameliorate cardiomyocyte hypertrophy, fibrosis, and heart failure. Online RNA-sequence analysis indicated p38/ERK-mediated mitochondrial reactive oxygen species (ROS) and nuclear factor kappa B (NF-κB) activation are the possible downstream molecular mechanisms for the effect of BAC-ACE2 interaction. Further studies in ACE2-knockdown cells and ACE2-/- mice suggested that benzoylaconitine targeted ACE2 to suppress p38/ERK-mediated mitochondrial ROS and NF-κB pathway activation. Our findings suggest that benzoylaconitine is a promising ACE2 agonist in regulating mitochondrial ROS release and inflammation activation to improve cardiac function in the treatment of heart failure.


Assuntos
Aconitina/análogos & derivados , Insuficiência Cardíaca , NF-kappa B , Ratos , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Espécies Reativas de Oxigênio/metabolismo , Peptidil Dipeptidase A/metabolismo , Angiotensina II/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Miócitos Cardíacos/metabolismo , Fibrose , Hipertrofia
19.
BMJ Open ; 14(2): e079798, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365292

RESUMO

OBJECTIVE: To investigate the prognostic impact of initial lung cancer (LC) on second primary breast cancer after LC (LC-BC) and further develop a nomogram for predicting the survival of patients. METHODS: All patients diagnosed with LC-BC and first primary BC (BC-1) during 2000-2017 were collected from Surveillance, Epidemiology, and End Results database. Pathological features, treatment strategies and survival outcomes were compared between LC-BC and BC-1 before and after propensity score matching (PSM). Cox regression analysis was performed to identify the prognostic factors associated with LC in patients with LC-BC. Additionally, least absolute shrinkage and selection operator regression analysis was used to select clinical characteristics for nomogram construction, which were subsequently evaluated using the concordance index (C-index), calibration curve and decision curve analysis (DCA). RESULTS: 827 429 patients with BC-1 and 1445 patients with LC-BC were included in the analysis. Before and after PSM, patients with BC-1 had a better prognosis than individuals with LC-BC in terms of both overall survival (OS) and breast cancer-specific survival (BCSS). Furthermore, characteristics such as more regional lymph node dissection, earlier stage and the lack of chemotherapy and radiation for LC were found to have a stronger predictive influence on LC-BC. The C-index values (OS, 0.748; BCSS, 0.818), calibration curves and DCA consistently demonstrated excellent predictive accuracy of the nomogram. CONCLUSION: In conclusion, patients with LC-BC have a poorer prognosis than those with BC-1, and LC traits can assist clinicians estimate survival of patients with LC-BC more accurately.


Assuntos
Neoplasias da Mama , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Pulmonares , Segunda Neoplasia Primária , Humanos , Feminino , Prognóstico , Neoplasias da Mama/terapia , Neoplasias Pulmonares/terapia , Pontuação de Propensão , Nomogramas
20.
Int J Ophthalmol ; 17(1): 107-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239955

RESUMO

AIM: To identify a maculopathy patient caused by new recessive compound heterozygous variants in RP1L1. METHODS: Comprehensive retinal morphological and functional examinations were evaluated for the patient with RP1L1 maculopathy. Targeted sequence capture array technique was used to screen potential pathologic variants. Polymerase chain reaction and Sanger sequencing were used to confirm the screening results. RESULTS: Fundus examination showed round macular lesions appeared in both eyes. Optical coherence tomography showed that the inner segment/outer segment continuity was disorganized and disruptive in the left eye, but it was uneven and slightly elevated in the right eye. Fundus autofluorescence showed patchy hyper-autofluorescence in the macula. Visual field examination indicates central defects in both eyes. Electroretinogram (ERG) and multifocal ERG showed no obvious abnormalities. Fundus fluorescein angiography in the macula showed obviously irregular hyper-fluorescence in the right eye and slightly hyper-fluorescence in the left eye. We found that the proband carried a missense variant (c.1972C>T) and a deletion variant (c.4717_4718del) of RP1L1, which were originated from the parents and formed compound heterozygous variants. Both variants are likely pathogenic according to the ACMG criteria. Multimodal imaging, ERG and detailed medical history are important diagnostic tools for differentiating between acquired and inherited retinal disorders. CONCLUSION: A maculopathy case with detailed retinal phenotype and new recessive compound heterozygous variants of RP1L1 is identified in a Chinese family, which expands the understanding of phenotype and genotype in RP1L1 maculopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA