Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(22): 6541-6555, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35819475

RESUMO

The presence of benzothiazoles (BTHs) and organic ultraviolet filters (UV filters) in aquatic ecosystems has emerged as a significant environmental issue, requiring urgent and efficient determination methods. A new, rapid, and sensitive determination method using gas chromatography triple quadrupole mass spectrometer (GC-MS/MS) was developed for the simultaneous extraction and analysis of 10 commonly used BTHs and 10 organic UV filters in surface water, wastewater, sediment, and sludge. For aqueous samples, solid-phase extraction (SPE) method was employed with optimizing of SPE cartridge type, pH, and elution solvent. For solid samples, ultrasonic extraction-solid-phase extraction purification (UE-SPE) and pressurized liquid extraction (PLE) methods were compared. And extraction conditions for ultrasonic extraction method (extraction solvents and extraction times) and PLE method (extraction temperatures and extraction cycles) were optimized. The limits of quantification for the 20 target compounds in surface water and wastewater were 0.01-2.12 ng/L and 0.05-6.14 ng/L, while those for sediment and sludge with UE-SPE method were 0.04-5.88 ng/g and 0.22-6.61 ng/g, respectively. Among the 20 target compounds, the recoveries ranged from 70 to 130% were obtained for 16, 15, 15, and 15 analytes in the matrix-spiked samples of surface water, wastewater, sediment, and sludge with three levels, respectively. And the precision was also acceptable with relative standard deviation (RSD) below 20% for all analytes. The developed methods were applied for the determination and quantification of target compounds in surface water, sediment, wastewater, and sludge samples collected from two wastewater treatment plants (WWTPs) and the Pearl River in Guangzhou, China. BTHs were frequently detected in surface water and wastewater, while UV filters were mainly found in sediment and sludge. Benzotriazole (BT) and 2-hydroxybenzothiazole (2-OH-BTH) were the two major BTHs in influent wastewater and surface water, respectively, with concentrations up to 966 and 189 ng/L. As for sediment and sludge, 2-(2'-hydroxy-5'-octylphenyl)-benzotriazole (UV-329) was a predominant chemical, detected at concentrations of 111 and 151 ng/g, respectively.


Assuntos
Esgotos , Poluentes Químicos da Água , Benzotiazóis/análise , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas , Esgotos/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/análise , Água/química , Poluentes Químicos da Água/análise
2.
Huan Jing Ke Xue ; 42(8): 3799-3807, 2021 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-34309266

RESUMO

Antibiotic resistance genes (ARGs) pose a serious threat to environmental biology and public health, along with the discharge and spread of wastewater. The advanced treatment of ARGs in wastewater therefore deserves special attention. In our previous study, we found that tidal flow constructed wetlands can effectively remove multiple ammonia from wastewater. In this study, we further optimized tidal flow constructed wetland systems by adding baffles and cultivating plants; we investigated the influence of process optimization on the removal of ARGs and the influence of functional microorganism distribution on nitrogen removal. The results show that the addition of baffles and plants can effectively improve the removal efficiency of ARGs, with the maximum removal rate of 21 resistance genes, in 7 categories, reaching 83.82%-100.0% with the simultaneous addition of baffles and plants. These removal rates were significantly higher than the increase resulting from a single baffle or plant group. From the comparison of the absolute abundance of ARGs in the substrate and plants, it is clear that the baffles can promote the enrichment of ARGs in the wetland substrate, while uptake by plants is also a way of removing ARGs. Combined with the results of nitrogen-cycle functional gene sequencing, system optimization can increase the diversity and richness of nitrification and denitrification functional microorganisms in the substrate, which is consistent with the higher removal rate of nitrification and total nitrogen in wastewater.


Assuntos
Antibacterianos , Áreas Alagadas , Desnitrificação , Resistência Microbiana a Medicamentos/genética , Nitrificação , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
3.
Sci Total Environ ; 798: 149299, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34332385

RESUMO

The extensive usage of organic ultraviolet filters (UV filters) and benzothiazoles (BTs) has caused continuous and widespread pollution in the aquatic environment. This study investigated the occurrence of nine organic UV filters and eight BTs in the surface water and sediment of two major drinking water source rivers in the Pearl River Basin (PRB). The detection frequencies of six organic UV filters and seven BTs were above 50% in surface water, while eight target compounds were as high as 100%. Composition profiles revealed that 2-Hydroxybenzothiazole (2-OH-BTH, 1112 ng/L) and 2-Mercaptobenzothiazole (2-SH-BTH, 426.3 ng/L) were the predominant compounds in surface water, while Octyl 4-methoxycinnamate (OMC, maximum concentration, 68.3 ng/g) and UV-329 (18.8 ng/g) were predominant in sediment. Significant positive correlations were observed between water quality parameters (temperature, total phosphorus (TP) and total nitrogen (TN)) and organic UV filters (UV-327 and UV-P), indicating the domestic discharge. The calculated annual flux of targets compounds indicated that West River (WR) promoted more BTs and UV filters to the PRB than North River (NR) (BTs: WR22, 88,517 kg/year; NR13, 15,660 kg/year; UV filters: WR22, 28,332 kg/year; NR13, 1128 kg/year). Significant relationship between the Gross Domestic Product (GDP) and annual flux of BTs (R2 = 0.96, p < 0.001), and UV filters (R2 = 0.88, p < 0.001) in the rivers were found by regression analysis. UV-329 was detected with medium risk (RQ > 0.1) in all WR surface water samples, and 2-SH-BTH was detected with high risk (RQ > 1) in half of the WR sediment samples. This study provides the first time reports on the organic UV filters and BTs in two major rivers in the Pearl River Basin, and further showed that these two types of contaminants are ubiquitous and with potential risks in surface water and sediment of PRB.


Assuntos
Rios , Poluentes Químicos da Água , Benzotiazóis , China , Monitoramento Ambiental , Água , Poluentes Químicos da Água/análise
4.
Environ Res ; 194: 110678, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33417911

RESUMO

5-methylbenzotriazole (5-TTri) and 5-chlorobenzotriazole (CBT) are two benzotriazole derivatives widely used in various industrial and domestic applications. This paper reports on the photochemical behaviour of 5-TTri and CBT in aqueous solutions under UV radiation at 254 nm and the influences of pH, salinity, metal species and humic acid (HA) on their photo-transformation processes. The photolysis of 5-TTri and CBT under the exposure to UV light were found to follow the first-order reaction kinetic in all cases with half-lives ranging from 7.1 h to 24.3 h for 5-TTri and 5.1 h-20.5 h for CBT in various aqueous solutions containing metal ions and HA. The photolysis rates for both 5-TTri and CBT were strongly dependent on the solution pH value, and decreased with increasing solution pH. Salinity, metal species Cu2+ and Fe3+, and especially HA had inhibitory effects on the photolysis of 5-TTri and CBT under UV light irradiation at 254 nm. We proposed the tentative photo transformation schemes for both 5-TTri and CBT, which involved two photoproducts (4-methylaniline and N, N-diethylaniline- p-toluidine) and three photoproducts (4-chloroaniline, Aniline and 2,6-diethylaniline), respectively, via N-N and N-NH bond scission and dechlorination process.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Fotólise , Salinidade , Raios Ultravioleta , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA