Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982679

RESUMO

The water lily (Nymphaea tetragona) is an ancient angiosperm that belongs to the Nymphaeaceae family. As a rooted floating-leaf plant, water lilies are generally cultivated in fresh water, therefore, little is known about their survival strategies under salt stress. Long-term salt stress causes morphological changes, such as the rapid regeneration of floating leaves and a significant decrease in leaf number and surface area. We demonstrate that salt stress induces toxicity soon after treatment, but plants can adapt by regenerating floating leaves that are photosynthetically active. Transcriptome profiling revealed that ion binding was one of the most-enriched GO terms in leaf-petiole systems under salt stress. Sodium-transporter-related genes were downregulated, whereas K+ transporter genes were both up- and downregulated. These results suggest that restricting intracellular Na+ importing while maintaining balanced K+ homeostasis is an adaptive strategy for tolerating long-term salt stress. ICP-MS analysis identified the petioles and leaves as Na-hyperaccumulators, with a maximum content of over 80 g kg-1 DW under salt stress. Mapping of the Na-hyperaccumulation trait onto the phylogenetic relationships revealed that water lily plants might have a long evolutionary history from ancient marine plants, or may have undergone historical ecological events from salt to fresh water. Ammonium transporter genes involved in nitrogen metabolism were downregulated, whereas NO3--related transporters were upregulated in both the leaves and petioles, suggesting a selective bias toward NO3- uptake under salt stress. The morphological changes we observed may be due to the reduced expression of genes related to auxin signal transduction. In conclusion, the floating leaves and submerged petioles of the water lily use a series of adaptive strategies to survive salt stress. These include the absorption and transport of ions and nutrients from the surrounding environments, and the ability to hyperaccumulate Na+. These adaptations may serve as the physiological basis for salt tolerance in water lily plants.


Assuntos
Nymphaea , Filogenia , Estresse Salino , Folhas de Planta/metabolismo , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
2.
BMC Plant Biol ; 23(1): 61, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710356

RESUMO

BACKGROUND: Lotus (Nelumbo Adans.) is used as an herbal medicine and the flowers are a source of natural flavonoids. 'Da Sajin', which was firstly found in the plateau area, is a natural mutant in flower color with red streamers dyeing around white petals. RESULTS: The LC-MS-MS results showed that eight anthocyanin compounds, including cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, malvidin 3-O-galactoside, and malvidin 3-O-glucoside, were differentially enriched in red-pigmented tissues of the petals, whereas most of these metabolites were undetected in white tissues of the petals. Transcriptome profiling indicated that the relative high expression levels of structural genes, such as NnPAL, NnF3H, and NnANS, was inconsistent with the low anthocyanin concentration in white tissues. Members of the NnMYB and NnbHLH transcription factor families were presumed to play a role in the metabolic flux in the anthocyanin and proanthocyanidin biosynthetic pathway. The expression model of translational initiation factor, ribosomal proteins and SKP1-CUL1-F-box protein complex related genes suggested an important role for translational and post-translational network in anthocyanin biosynthesis. In addition, pathway analysis indicated that light reaction or photo destruction might be an important external cause for floral color determination in lotus. CONCLUSIONS: In this study, it is supposed that the natural lotus mutant 'Da Sajin' may have originated from a red-flowered ancestor. Partial loss of anthocyanin pigments in petals may result from metabolic disorder caused by light destruction. This disorder is mainly regulated at post translation and translation level, resulting in a non-inherited phenotype. These results contribute to an improved understanding of anthocyanin metabolism in lotus, and indicate that the translational and post-translational regulatory network determines the metabolic flux of anthocyanins and proanthocyanidins under specific environmental conditions.


Assuntos
Antocianinas , Nelumbo , Antocianinas/metabolismo , Nelumbo/química , Flavonoides/metabolismo , Fenótipo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA