Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 21(21): 25197-209, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150361

RESUMO

A 600-µm long-cavity laser diode with a front-facet reflectance of 2% is demonstrated as a colorless OC-192 transmitter for the future DWDM-PON, which is packed in a TO-56-can package of only 4-GHz frequency bandwidth but can be over-bandwidth modulated with 10-Gbit/s non-return-to-zero data-stream. The coherent injection-locking successfully suppresses its side-mode intensity and noise floor level, which further improves its modulation throughput at higher frequencies. With increasing the coherent injection-locking power from -12 to -3 dBm, the side-mode suppression ratio significantly increases from 39 to 50 dB, which also suppresses the frequency chirp from -12 to -4 GHz within a temporal range of 150 ps. The dense but weak longitudinal modes (with 0.6-nm spacing) in the long-cavity laser diode suppresses to one single-mode in a 100-GHz wide DWDM channel for carrying the OC-192 data at 9.953 Gbit/s. Such an over-bandwidth modulated laser diode still exhibits an on/off extinction ratio of 6.68 dB and a signal-to-noise ratio of 4.96 dB, which can provide a back-to-back receiving power sensitivity of -12.2 dBm at BER of 10⁻9. After 25-km DSF transmission of the OOK data-stream at a bit rate up to 10 Gbit/s, the receiving power sensitivity is -10.1 dBm at a requested BER of 10⁻9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA