Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
J Hypertens ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38780189

RESUMO

BACKGROUND: Unhealthy sleep patterns are common during pregnancy and have been associated with an increased risk of developing hypertensive disorders of pregnancy (HDPs) in observational studies. However, the causality underlying these associations remains uncertain. This study aimed to evaluate the potential causal association between seven sleep traits and the risk of HDPs using a two-sample Mendelian randomization study. METHODS: Genome-wide association study (GWAS) summary statistics were obtained from the FinnGen consortium, UK Biobank, and other prominent consortia, with a focus on individuals of European ancestry. The primary analysis utilized an inverse-variance-weighted MR approach supplemented by sensitivity analyses to mitigate potential biases introduced by pleiotropy. Furthermore, a two-step MR framework was employed for mediation analyses. RESULTS: The data analyzed included 200 000-500 000 individuals for each sleep trait, along with approximately 15 000 cases of HDPs. Genetically predicted excessive daytime sleepiness (EDS) exhibited a significant association with an increased risk of HDPs [odds ratio (OR) 2.96, 95% confidence interval (95% CI) 1.40-6.26], and the specific subtype of preeclampsia/eclampsia (OR 2.97, 95% CI 1.06-8.3). Similarly, genetically predicted obstructive sleep apnea (OSA) was associated with a higher risk of HDPs (OR 1.27, 95% CI 1.09-1.47). Sensitivity analysis validated the robustness of these associations. Mediation analysis showed that BMI mediated approximately 25% of the association between EDS and HDPs, while mediating up to approximately 60% of the association between OSA and the outcomes. No statistically significant associations were observed between other genetically predicted sleep traits, such as chronotype, daytime napping, sleep duration, insomnia, snoring, and the risk of HDPs. CONCLUSION: Our findings suggest a causal association between two sleep disorders, EDS and OSA, and the risk of HDPs, with BMI acting as a crucial mediator. EDS and OSA demonstrate promise as potentially preventable risk factors for HDPs, and targeting BMI may represent an alternative treatment strategy to mitigate the adverse impact of sleep disorders.

2.
J Agric Food Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606987

RESUMO

A primary challenge of polysaccharide analysis is the need for comprehensive extraction and characterization methods. In this study, mulberry polysaccharides at different maturities were fully extracted through a two-step process involving ethylenediaminetetraacetic acid (EDTA) and sodium hydroxide (NaOH), and their structures were determined by a combination analysis of monosaccharides and glycosidic linkages based on liquid chromatography triple quadrupole mass spectrometry (LC/QqQ-MS). The results indicate mulberry polysaccharides mainly contain highly branched pectic polysaccharides, (1,3,6)-linked glucan, xylan, and xyloglucan, but the content of different portions varies at different maturity stages. HG decreases from 19.12 and 19.14% (green mulberry) to 9.80 and 6.08% (red mulberry) but increases to 17.83 and 11.83% as mulberry transitioned from red to black. In contrast, the contents of glucan showed opposite trends. When mulberry turns red to black, the RG-I arabinan chains decrease from 47.75 and 28.86% to 13.16 and 12.72%, while the galactan side chains increase from 1.18 and 1.91 to 8.3 and 6.49%, xylan and xyloglucan show an increase in content. Overall, the two-step extraction combined with LC/QqQ-MS provides a new strategy for extensive analysis of complex plant polysaccharides.

3.
Carbohydr Polym ; 335: 122079, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616076

RESUMO

The polysaccharides and triterpenes are important functional components of Ganoderma lucidum, but traditional preparation process of G. lucidum functional components can only realize the preparation of single functional component, which has poor targeting and low efficiency. In this study, the existence state of the functional components of G. lucidum was revealed. Then, the single step extraction process for functional components was established, and the precise structure evaluation of polysaccharide and triterpenes was conducted based on the process. The results showed that preparation time required for this strategy is only one-sixth of the traditional one, and 50 % of raw materials can be saved. Structural analysis of the functional components revealed that triterpenes were mainly Ganoderic acid and Lucidenic acid, and the polysaccharide structure was mainly 1,3-glucan and 1,3,6-glucan. The establishment of single step extraction strategy and the evaluation of the fine structure of functional components improved the efficiency of preparation and result determination, and provided an important basis for the development and utilization of green and low-carbon G. lucidum and even edible fungi resources and human nutritional dietary improvement strategies.


Assuntos
Reishi , Triterpenos , Humanos , Polissacarídeos , Glucanos , China
4.
Food Chem ; 444: 138655, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330612

RESUMO

In this study, we addressed the limited water solubility of curcumin by utilizing epigallocatechin-3-gallate to form nanoparticles through self-assembly. The resulting particles, ranging from 100 to 150 nm, exhibited a redshift in the UV-visible spectrum, from 425 nm to 435 nm, indicative of potential π-π stacking. Molecular docking experiments supported this finding. Curcumin loaded with epigallocatechin-3-gallate showed exceptional dispersibility in aqueous solutions, with 90.92 % remaining after 60 days. The electrostatic screening effect arises from the charge carried by epigallocatechin-3-gallate on the nanoparticles, leading to enhanced retention of curcumin under different pH, temperature, and ionic strength conditions. Furthermore, epigallocatechin-3-gallate can interact with other hydrophobic polyphenols, improving their dispersibility and stability in aqueous systems. Applying this principle, a palatable beverage was formulated by combining turmeric extract and green tea. The nanoparticles encapsulated with epigallocatechin-3-gallate show potential for improving the applicability of curcumin in aqueous food systems.


Assuntos
Catequina , Catequina/análogos & derivados , Curcumina , Nanopartículas , Curcumina/química , Simulação de Acoplamento Molecular , Bebidas , Catequina/química , Nanopartículas/química , Água
5.
BMC Med Genomics ; 17(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167320

RESUMO

BACKGROUND: Hereditary hearing loss is a highly heterogeneous disorder. This study aimed to identify the genetic cause of a Chinese family with autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL). METHODS: Clinical information and peripheral blood samples were collected from the proband and its parents. Two-step high-throughput next-generation sequencing on the Ion Torrent platform was applied to detect variants as follows. First, long-range PCR was performed to amplify all the regions of the GJB2, GJB3, SLC26A4, and MT-RNR1 genes, followed by next-generation sequencing. If no candidate pathogenetic variants were found, the targeted exon sequencing with AmpliSeq technology was employed to examine another 64 deafness-associated genes. Sanger sequencing was used to identify variants and the lineage co-segregation. The splicing of the MYO15A gene was assessed by in silico bioinformatics prediction and minigene assays. RESULTS: Two candidate MYO15A gene (OMIM, #602,666) heterozygous splicing variants, NG_011634.2 (NM_016239.3): c.6177 + 1G > T and c.9690 + 1G > A, were identified in the proband, and these two variants were both annotated as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Further bioinformatic analysis predicted that the c.6177 + 1G > T variant might cause exon skipping and that the c.9690 + 1G > A variant might activate a cryptic splicing donor site in the downstream intronic region. An in vitro minigene assay confirmed the above predictions. CONCLUSIONS: We identified a compound heterozygous splicing variant in the MYO15A gene in a Han Chinese family with ARNSHL. Our results broaden the spectrum of MYO15A variants, potentially benefiting the early diagnosis, prevention, and treatment of the disease.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Miosinas/genética , Surdez/genética , Perda Auditiva Neurossensorial/genética , Genes Recessivos , Linhagem , Mutação
6.
Plant Commun ; 5(3): 100775, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38050356

RESUMO

The chloroplast is a critical battleground in the arms race between plants and pathogens. Among microbe-secreted mycotoxins, tenuazonic acid (TeA), produced by the genus Alternaria and other phytopathogenic fungi, inhibits photosynthesis, leading to a burst of photosynthetic singlet oxygen (1O2) that is implicated in damage and chloroplast-to-nucleus retrograde signaling. Despite the significant crop damage caused by Alternaria pathogens, our understanding of the molecular mechanism by which TeA promotes pathogenicity and cognate plant defense responses remains fragmentary. We now reveal that A. alternata induces necrotrophic foliar lesions by harnessing EXECUTER1 (EX1)/EX2-mediated chloroplast-to-nucleus retrograde signaling activated by TeA toxin-derived photosynthetic 1O2 in Arabidopsis thaliana. Mutation of the 1O2-sensitive EX1-W643 residue or complete deletion of the EX1 singlet oxygen sensor domain compromises expression of 1O2-responsive nuclear genes and foliar lesions. We also found that TeA toxin rapidly induces nuclear genes implicated in jasmonic acid (JA) synthesis and signaling, and EX1-mediated retrograde signaling appears to be critical for establishing a signaling cascade from 1O2 to JA. The present study sheds new light on the foliar pathogenicity of A. alternata, during which EX1-dependent 1O2 signaling induces JA-dependent foliar cell death.


Assuntos
Alternaria , Arabidopsis , Alternaria/metabolismo , Ácido Tenuazônico/metabolismo , Oxigênio Singlete/metabolismo , Virulência , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Transdução de Sinais
7.
Pest Manag Sci ; 80(1): 133-148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37103431

RESUMO

BACKGROUND: Bioherbicides are becoming more attractive as safe weed control tools towards sustainable agriculture. Natural products constitute an important source chemicals and chemical leads for discovery and development of novel pesticide target sites. Citrinin is a bioactive compound produced by fungi of the genera Penicillium and Aspergillus. However, its physiological-biochemical mechanism as a phytotoxin remains unclear. RESULTS: Citrinin causes visible leaf lesions on Ageratina adenophora similar to those produced by the commercial herbicide bromoxynil. Phytotoxicity bioassay tests using 24 plant species confirmed that citrinin has a broad activity spectrum and therefore has potential as a bioherbicide. Based on chlorophyll fluorescence studies, citrinin mainly blocks PSII electron flow beyond plastoquinone QA at the acceptor side, resulting in the inactivation of PSII reaction centers. Furthermore, molecular modeling of citrinin docking to the A. adenophora D1 protein suggests that it binds to the plastoquinone QB site by a hydrogen bond between the O1 hydroxy oxygen atom of citrinin and the histidine 215 of the D1 protein, the same way as classical phenolic PSII herbicides do. Finally, 32 new citrinin derivatives were designed and sorted according to free energies on the basis of the molecular model of an interaction between the citrinin molecule and the D1 protein. Five of the modeled compounds had much higher ligand binding affinity within the D1 protein compared with lead compound citrinin. CONCLUSION: Citrinin is a novel natural PSII inhibitor that has the potential to be developed into a bioherbicide or utilized as a lead compound for discovery of new derivatives with high herbicidal potency. © 2023 Society of Chemical Industry.


Assuntos
Citrinina , Herbicidas , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Controle de Plantas Daninhas
8.
Int J Biol Macromol ; 258(Pt 2): 128777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096935

RESUMO

Microcapsules were always used as functional material carriers for targeted delivery and meanwhile offering protection. However, microcapsule wall materials with specific properties were required, which makes the choice of wall material a key factor. In our previous study, a highly branched rhamnogalacturonan I rich (RG-I-rich) pectin was extracted from citrus canning processing water, which showed good gelling properties and binding ability, indicating it could be a potential microcapsule wall material. In the present study, Lactiplantibacillus plantarum GDMCC 1.140 and Lactobacillus rhamnosus were encapsulated by RG-I-rich pectin with embedding efficiencies of about 65 %. The environmental tolerance effect was evaluated under four different environmental stresses. Positive protection results were obtained under all four conditions, especially under H2O2 stress, the survival rate of probiotics embedded in microcapsules was about double that of free probiotics. The storage test showed that the total plate count of L. rhamnosus encapsulated in RG-I-rich pectin microcapsules could still reach 6.38 Log (CFU/mL) at 25 °C for 45 days. Moreover, probiotics embedded in microcapsules with additional incubation to form a biofilm layer inside could further improve the probiotics' activities significantly in the above experiments. In conclusion, RG-I-rich pectin may be a good microcapsule wall material for probiotics protection.


Assuntos
Peróxido de Hidrogênio , Probióticos , Cápsulas/química , Pectinas/química , Probióticos/química
9.
Foods ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002152

RESUMO

The effects of pectin from Citrus unshiu Marc. on glycolipid metabolism, the morphologies of the pancreas and epididymal fat, the gut microbiota, and the metabolites of short-chain fatty acids (SCFAs) in db/db mice were investigated in this study. The results indicated that pectin reduced the levels of fasting blood glucose, glycated serum protein, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while increasing the levels of high-density lipoprotein cholesterol. Meanwhile, pectin could improve the morphology of islet cells and inhibit the hypertrophy of adipocytes. Additionally, pectin not only regulated the intestinal flora dysbiosis in db/db mice, as shown by the increasing proportion of Firmicutes/Bacteroidetes and the relative abundance of Ligilactobacillus, Lactobacillus, and Limosilactobacillus, but also remedied the metabolic disorder of SCFAs in db/db mice. These results suggest that pectin could promote glucose and lipid metabolism by regulating the intestinal flora with changes in SCFA profile. This study proves that pectin might serve as a new prebiotic agent to prevent the disorder of glycolipid metabolism.

10.
Foods ; 12(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37685247

RESUMO

Polyphenols, as common components with various functional activities in plants, have become a research hotspot. However, researchers have found that the bioavailability and bioactivity of plant polyphenols is generally low because they are usually in the form of tannins, anthocyanins and glycosides. Polyphenol-rich fermented foods (PFFs) are reported to have better bioavailability and bioactivity than polyphenol-rich foods, because polyphenols are used as substrates during food fermentation and are hydrolyzed into smaller phenolic compounds (such as quercetin, kaempferol, gallic acid, ellagic acid, etc.) with higher bioactivity and bioavailability by polyphenol-associated enzymes (PAEs, e.g., tannases, esterases, phenolic acid decarboxylases and glycosidases). Biotransformation pathways of different polyphenols by PAEs secreted by different microorganisms are different. Meanwhile, polyphenols could also promote the growth of beneficial bacteria during the fermentation process while inhibiting the growth of pathogenic bacteria. Therefore, during the fermentation of PFFs, there must be an interactive relationship between polyphenols and microorganisms. The present study is an integration and analysis of the interaction mechanism between PFFs and microorganisms and is systematically elaborated. The present study will provide some new insights to explore the bioavailability and bioactivity of polyphenol-rich foods and greater exploitation of the availability of functional components (such as polyphenols) in plant-derived foods.

11.
Carbohydr Polym ; 320: 121234, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659819

RESUMO

Favorable hydrogels can be used as a material to deliver bioactive molecules and improve the stability of bioactive substances, while their safety needs to be improved. In this study, protocatechuic acid (PCA) and Fe3+ were rapidly self-assembled to form a metal-phenolic network under different pH conditions, and then sodium alginate (SA) was added to prepare the SA/PCA/Fe hydrogel without adding other chemical reagents. The structural characteristic of SA/PCA/Fe hydrogel was characterized by infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The results showed that the structures of SA/PCA/Fe hydrogels prepared at different pH values were significantly different. The texture analysis, water-holding measurement and rheological analysis indicated that the SA/PCA/Fe hydrogel showed higher gel strength, water holding capacity and storage modulus. Thermogravimetric analysis illuminated that the SA/PCA/Fe hydrogel enhanced the thermal stability of free anthocyanins through encapsulating anthocyanins. Moreover, in vitro simulated digestion experiment revealed that SA/PCA/Fe hydrogel could control the release of anthocyanins in the simulated gastrointestinal tract. To sum up, this present study might provide a safer and feasible way for the delivery of bioactive substances.


Assuntos
Antocianinas , Hidrogéis , Fenóis , Alginatos , Metais , Água , Concentração de Íons de Hidrogênio
12.
Int J Biol Macromol ; 253(Pt 6): 126454, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37619688

RESUMO

In recent years, the incidence of inflammatory bowel disease has gradually increased. Traditional drugs can reduce inflammation, but cannot be targeting released and often require the coordination with delivery systems. However, a good targeting performance delivery system is still scarce currently. Inflammation can trigger oxidative stress, producing large amounts of oxides such as nitric oxide (NO). Based on this, the present experiment innovatively designed a hydrogel delivery system with NO response that could be inflammation targeting. The hydrogel is composed of sodium alginate modified with glycerol methacrylate, crosslinked with NO response agent by photo-crosslinking method, which have low swelling (37 %) and good mechanical properties with a stable structure even at 55 °C. The results of in vitro digestion also indicated that the hydrogel had a certain tolerance to gastrointestinal digestion. And in the NO environment, it was interestingly found that the structure and mechanical properties of the hydrogels changed significantly. Moreover, hydrogels have good biocompatibility, which ensures their safe use in vivo. In conclusion, this NO-responsive-based delivery system is feasible and provides a new approach for drugs and active factors targeting delivery in the future.


Assuntos
Hidrogéis , Doenças Inflamatórias Intestinais , Humanos , Hidrogéis/química , Óxido Nítrico , Alginatos/química , Inflamação
13.
Int J Biol Macromol ; 250: 126129, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541470

RESUMO

Citrus paradisi Macf. cv. Changshanhuyou and Citrus paradisi Macf. cv. Star Ruby are two emerging processed citrus fruits. The processing produces lots of peel wastes rich in pectin. While more attentions were paid on pectin's functional properties, the quality about commercial application like gel grade was little investigated. In this study, we established a method for gel grade determination based on texture analyzer, the new method is economical and can be used on a large scale in the laboratory. The commercial application related qualities of two citrus pectins were also studied in detail. The results showed that the yields of Changshanhuyou and Star Ruby pectins (CHP and SRP) were 20.23 % and 18.33 %, respectively. The indexes of CHP and SRP mostly were in line with the commodity standards, except the dry weight loss. The gel grades of CHP and SRP determined by the new method were 109.9 and 96.8, respectively. The CHP aqueous solution exhibited higher apparent viscosity and better performance in stabilizing acidified milk drink (AMD) compared with commercial pectin. From the view of commercial application related qualities and functional properties, CHP could be a good potential commercial pectin.

14.
J Colloid Interface Sci ; 651: 612-621, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562303

RESUMO

Programmable smart textiles with adaptive moisture/heat conditioning (MHC) capabilities are globally being sought to meet the requirements of comfort, energy efficiency, and health protection. However, a universal strategy for fabricating truly scalable and customizable MHC textiles is lacking. In this study, we introduce a scalable in situ grafting approach for the continuous fabrication of two series of smart textile yarns with opposite thermoresponsive wetting behaviors. In particular, the wetting transition temperature can be precisely programmed by adjusting the grafting formula, making the yarns highly customizable. The smart yarns demonstrated excellent mechanical strength, whiteness, weavability, biocompatibility, and washability (with more than 60 home washes), comparable to those of regular textile yarns. They can serve as building blocks independently or in combination to create smart textiles with adaptive sweat wicking and intelligent moisture/heat regulation capabilities. A proposed hybrid textile integrating both the two series of smart yarns can offer dry-contact and cooling/keep-warming effects of approximately 1.6/2.8 °C, respectively, in response to changes in ambient temperature. Our method provides a rich array of design options for nonpowered MHC textiles while maintaining a balance between traditional wearing conventions and large-scale production.

15.
Food Funct ; 14(18): 8369-8382, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37606621

RESUMO

Rosa sterilis S. D. Shi is a new variety of R. roxburghii Tratt and its fruits are rich in bioactive components, but its effects and mechanisms against intestinal inflammation are currently unknown. In this study, the main components of the ethanol extract of R. sterilis S. D. Shi fruits (RSE) were identified and its anti-inflammatory efficacy in DSS-induced mice was evaluated. A total of nine compounds were identified, including 1-O-E-cinnamoyl-(6-arabinosylglucose), ellagic acid-O-rhamnoside, (epi) catechin, niga-ichigoside F1, etc. The results demonstrated that RSE ameliorated DSS-induced inflammation in mouse colon tissues by increasing mucin expression, reducing the production of TNF-α, IL-1ß, and IL-6, inhibiting the mRNA expression of COX-2 and iNOS, regulating the composition of gut microbiota through suppressing Escherichia-Shigella while increasing Akkermansia muciniphila, and promoting the production of SCFAs, especially acetic acid. Briefly, RSE showed outstanding potential for anti-inflammatory activity and is expected to be a promising dietary supplement for healthy individuals to prevent or relieve colitis and colitis-related diseases, which provided a new direction for functional food development.


Assuntos
Catequina , Colite , Rosa , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação , Ácido Acético
16.
Int J Biol Macromol ; 248: 125912, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479207

RESUMO

To investigate the effect of heat-moisture treatment (HMT) on the physiochemical properties and in vitro digestibility of corn starch, the pasting behavior, viscoelasticity, thermal properties, long/short range structure, morphology and in vitro digestion of corn starch treated with different HMT conditions (HMT-20, 25, 30, 35 and 40 %) were characterized. Results indicated that after HMT, the pasting and disintegration behaviors of corn starch were affected and correlated with the moisture content. The dynamic viscoelasticity of corn starch was changed, and when glassy conditions were reached, the elastic properties decreased with increasing moisture while the viscous properties increased, especially for the HMT-40 %. The thermal stability of starch was improved by HMT, although the enthalpy of pasting (ΔH) was reduced. Additionally, the HMT processing also promoted the conversion of RDS to SDS and/or RS (SDS and RS increased to 39.80 % and 31.68 % for HMT-40 %, respectively), which might attribute to the rearrangement of free starch molecules. The present work provides a potential approach to make functional starches with healthy properties.


Assuntos
Amido , Zea mays , Amido/química , Zea mays/química , Temperatura Alta , Termodinâmica , Digestão
17.
Food Chem ; 427: 136644, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390737

RESUMO

Bayberry juice is favored for its unique taste and flavor, while heat sterilization tends to reduce the aroma quality during processing, which limits its acceptability to consumers. To address this issue, we use exogenous polyphenols to regulate flavor compounds to improve the product quality. Total 13 differential key aroma-active compounds were identified between fresh bayberry juice (FBJ) and heat-sterilized bayberry juice (HBJ) using aroma extract dilution analysis (AEDA), orthogonal partial least squares-discriminant analysis (OPLS-DA) and odor activity values (OAVs). Further, eight polyphenols were added to investigate their influences on the aroma quality of HBJ respectively. The results showed that all tested polyphenols could maintain the aroma profile of HBJ closer to FBJ and improve the odor preference of HBJ, among which resveratrol and daidzein were most effective. Their aroma molecular regulatory mechanism involved enhancing the characteristic aroma of bayberry and reducing the certain off-flavored compounds produced by heat sterilization.


Assuntos
Myrica , Compostos Orgânicos Voláteis , Odorantes/análise , Temperatura Alta , Polifenóis/análise , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Esterilização , Olfatometria
18.
Int J Biol Macromol ; 243: 124887, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196711

RESUMO

Different ratios of hesperetin (HT) were successfully grafted onto pectin from basic water (PB) molecules via free radical-induced reaction. The structure of PB-HT conjugates was characterized by ultraviolet spectroscopy, infrared spectroscopy, X-ray diffraction and scanning electron microscopy. Results indicated that HT was successfully grafted onto pectin molecules, and PB-HT-0.5 showed the highest HT content (103.18 ± 2.76 mg/g). Thermogravimetric analysis indicated that HT crystals showed good thermal resistance and could improve the thermal stability of PB-HT conjugates. Additionally, PB-HT conjugates showed good cytocompatibility and blood compatibility. This study provides a novel and efficient method to synthesize hesperetin-grafted pectin conjugate, which showed potential application in the fields of functional foods in the future.


Assuntos
Hesperidina , Pectinas , Pectinas/química , Difração de Raios X
19.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240033

RESUMO

Griseofulvin was considered an effective agent for cancer therapy in past decades. Although the negative effects of griseofulvin on microtubule stability are known, the exact target and mechanism of action in plants remain unclear. Here, we used trifluralin, a well-known herbicide targeting microtubules, as a reference and revealed the differences in root tip morphology, reactive oxygen species production (ROS), microtubule dynamics, and transcriptome analysis between Arabidopsis treated with griseofulvin and trifluralin to elucidate the mechanism of root growth inhibition by griseofulvin. Like trifluralin, griseofulvin inhibited root growth and caused significant swelling of the root tip due to cell death induced by ROS. However, the presence of griseofulvin and trifluralin caused cell swelling in the transition zone (TZ) and meristematic zone (MZ) of root tips, respectively. Further observations revealed that griseofulvin first destroyed cortical microtubules in the cells of the TZ and early elongation zone (EZ) and then gradually affected the cells of other zones. The first target of trifluralin is the microtubules in the root MZ cells. Transcriptome analysis showed that griseofulvin mainly affected the expression of microtubule-associated protein (MAP) genes rather than tubulin genes, whereas trifluralin significantly suppressed the expression of αß-tubulin genes. Finally, it was proposed that griseofulvin could first reduce the expression of MAP genes, meanwhile increasing the expression of auxin and ethylene-related genes to disrupt microtubule alignment in root tip TZ and early EZ cells, induce dramatic ROS production, and cause severe cell death, eventually leading to cell swelling in the corresponding zones and inhibition of root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubulina (Proteína)/metabolismo , Arabidopsis/metabolismo , Griseofulvina/farmacologia , Griseofulvina/metabolismo , Trifluralina/metabolismo , Trifluralina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Raízes de Plantas/metabolismo
20.
Int J Biol Macromol ; 240: 124495, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076078

RESUMO

Cotton fabrics (CFs) with persistent and rapid bactericidal capability would be of great significance for daily health protection because CFs are very suitable for the growth and reproduction of microorganisms. Herein, we developed a reactive N-halamine compound, 3-(3-hydroxypropyl diisocyanate)-5,5-dimethylhydantoin (IPDMH), that can be covalently bound to a CF to generate a bactericidal CF after chlorination (CF-DMF-Cl) without damaging its surface morphology. The antibacterial rates of CF-DMF-Cl (0.5 wt% IPDMH) against the gram-negative bacterium Escherichia coli (E. coli) and gram-positive bacterium Staphylococcus aureus (S. aureus) reached 99.99 % and were maintained at 90 % (against E. coli) and 93.5 % (against S. aureus) after 50 laundering cycles. The combination of contact killing and release killing mechanisms by CF-PDM-Cl leads to its rapid and persistent bactericidal activity. In addition, CF-DMF-Cl exhibits adequate biocompatibility, well-maintained mechanical properties, air/water vapor permeability and whiteness. Therefore, the proposed CF-DMF-Cl has great potential applications as a bactericidal CF for use in medical textiles, sportswear, home dressings, and so on.


Assuntos
Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Aminas , Têxteis/microbiologia , Fibra de Algodão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA