Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 39: 582-594, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38883316

RESUMO

Repairing large-area soft tissue defects caused by traumas is a major surgical challenge. Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regeneration. In this study, we developed an orthogonally woven three-dimensional (3D) nanofiber scaffold combining electrospinning, weaving, and modified gas-foaming technology. The developed orthogonally woven 3D nanofiber scaffold had a modular design and controlled fiber alignment. In vitro, the orthogonally woven 3D nanofiber scaffold exhibited adjustable mechanical properties, good cell compatibility, and easy drug loading. In vivo, for one thing, the implantation of an orthogonally woven 3D nanofiber scaffold in a full abdominal wall defect model demonstrated that extensive granulation tissue formation with enough mechanical strength could promote recovery of abdominal wall defects while reducing intestinal adhesion. Another result of diabetic wound repair experiments suggested that orthogonally woven 3D nanofiber scaffolds had a higher wound healing ratio, granulation tissue formation, collagen deposition, and re-epithelialization. Taken together, this novel orthogonally woven 3D nanofiber scaffold may provide a promising and effective approach for optimal soft tissue regeneration.

2.
Front Neurol ; 15: 1359292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628696

RESUMO

Background: To investigate the causal associations of serum urate (SUA) with stroke risk and prognosis using Mendelian randomization (MR) and the potential mediating role of stroke risk factors in the causal pathways. Methods: We used the random-effects inverse variance weighting (IVW) as our primary method. We initially performed two-sample univariable MR (UVMR) to identify the causal associations of SUA (n = 437,354) with any stroke (AS, FinnGen: n = 311,635; MEGASTROKE: n = 446,696), ischemic stroke (IS, FinnGen: n = 212,774; MEGASTROKE: n = 440,328), intracranial hemorrhage (ICH, FinnGen: n = 343,663; ISGC: n = 3,026), functional outcome after ischemic stroke at 90d (n = 4,363), and motor recovery within 24 months after stroke (n = 488), and then multivariable MR (MVMR) to estimate the direct causal effects of SUA on these outcomes, adjusting for potential confounders. Finally, we further conducted a two-step MR to investigate the potential mediating role of body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), and estimated glomerular filtration rate (eGFR) in the identified causal pathways. Results: Genetically predicted elevated SUA levels were significantly associated with increased risk of AS (meta-analysis: OR = 1.09, 95% CI [1.04-1.13], p = 3.69e-05) and IS (meta-analysis: OR = 1.10, 95% CI [1.01-1.19], p = 0.021) and with improved poor functional outcome after ischemic stroke at 90d (OR = 0.81, 95% CI [0.72-0.90], p = 1.79e-04) and motor recovery within 24 months after stroke (OR = 1.42, 95% CI [1.23-1.64], p = 2.15e-06). In MVMR, SBP and DBP significantly attenuated the causal effects of SUA on AS, IS, and functional outcome after ischemic stroke at 90d and motor recovery within 24 months after stroke. Further mediation analyses showed that SBP mediated 52.4 and 34.5% of the effects of SUA on AS and IS, while DBP mediated 28.5 and 23.4% of the causal effects, respectively. Conclusion: This study supports the dual role of genetically predicted SUA in increasing stroke risk, especially ischemic stroke risk, and in improving functional outcome and motor recovery. SBP and DBP are key mediators lying on the causal pathways of SUA with AS and IS.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38623809

RESUMO

Significance: Acute wounds such as severe burns and chronic wounds like diabetic ulcers present a significant threat to human health. Wound dressings made from natural polymers offer inherent properties that effectively enhance wound healing outcomes and reduce healing time. Recent Advances: Numerous innovative hydrogels are being developed and translated to the clinic to successfully treat various wound types. This underscores the substantial potential of hydrogels in the future wound care market. Economically, annual sales of wound care products are projected to reach $15-22 billion by 2024. Critical Issues: While chitosan-, cellulose-, and collagen-based hydrogel dressings are currently commercially available, scaling-up and manufacturing hydrogels for commercial products remain a challenging process. In addition, ensuring the sterility and stability of the chemical or biological components comprising the hydrogel is a critical consideration. Future Directions: In light of the persistent increase in wound fatalities and the resulting economic and social impacts, as well as the importance of educating the public about dietary health and disease, there should be increased investment in new wound care dressings, particularly hydrogels derived from natural products. With numerous researchers dedicated to advancing preclinical hydrogels, the future holds promise for more innovative and more personalized hydrogel wound dressings.

4.
Adv Sci (Weinh) ; 11(19): e2307409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477567

RESUMO

Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.


Assuntos
Celulose , Modelos Animais de Doenças , Hemorragia , Animais , Coelhos , Ratos , Celulose/química , Citrus/química , Hemostáticos/farmacologia , Masculino , Hemostasia/efeitos dos fármacos , Ratos Sprague-Dawley , Géis , Ferimentos e Lesões/complicações
5.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422540

RESUMO

Background.Concern has been expressed regarding the risk of carcinogenesis from medical computed tomography (CT) radiation. Lowering radiation in CT without appropriate modifications often leads to severe noise-induced artifacts in the images. The utilization of deep learning (DL) techniques has achieved promising reconstruction performance in low-dose CT (LDCT) imaging. However, most DL-based algorithms require the pre-collection of a large set of image pairs (low-dose/standard-dose) and the training of networks in an end-to-end supervised manner. Meanwhile, securing such a large volume of paired, well-registered training data in clinical practice is challenging. Moreover, these algorithms often overlook the potential to utilize the abundant information in a large collection of LDCT-only images/sinograms.Methods.In this paper, we introduce a semi-supervised iterative adaptive network (SIA-Net) for LDCT imaging, utilizing both labeled and unlabeled sinograms in a cohesive network framework, integrating supervised and unsupervised learning processes. Specifically, the supervised process captures critical features (i.e. noise distribution and tissue characteristics) latent in the paired sinograms, while the unsupervised process effectively learns these features in the unlabeled low-dose sinograms, employing a conventional weighted least-squares model with a regularization term. Furthermore, the SIA-Net method is designed to adaptively transfer the learned feature distribution from the supervised to the unsupervised process, thereby obtaining a high-fidelity sinogram through iterative adaptive learning. Finally, high-quality CT images can be reconstructed from the refined sinogram using the filtered back-projection algorithm.Results.Experimental results on two clinical datasets indicate that the proposed SIA-Net method achieves competitive performance in terms of noise reduction and structure preservation in LDCT imaging, when compared to traditional supervised learning methods.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos
6.
J Stroke Cerebrovasc Dis ; 33(4): 107612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309380

RESUMO

OBJECTIVES: Previous observational studies have suggested that gastroesophageal reflux disease (GERD) increases the risk of stroke, but the specific underlying mechanisms are unclear. We investigated the causal associations of GERD with stroke and its subtypes using Mendelian randomization (MR), and evaluated the potential mediating effects of modifiable stroke risk factors in the causal pathway. METHODS: Genetic instrumental variables for GERD were extracted from the latest genome-wide association study (GWAS) summary level data. We initially performed two-sample MR to examine the association of GERD with stroke and its subtypes, including ischemic stroke, intracranial hemorrhage, and the major subtypes of ischemic stroke. Two-step MR was further employed to investigate the mediating effect of 15 risk factors in the causal pathway. RESULTS: We found significant causal associations of genetically predicted GERD with increased risk of stroke (OR: 1.22 95% CI: 1.126-1.322), ischemic stroke (OR: 1.19 95% CI: 1.098-1.299), and large-artery stroke (OR: 1.49 95% CI: 1.214-1.836). Replication and sensitivity analyses yielded consistent effect directions and similar estimates. Further mediation analyses indicated that hypertension (HTN), systolic blood pressure (SBP), and type 2 diabetes (T2D) mediated 36.0%, 9.0%, and 15.8% of the effect of GERD on stroke; 42.9%, 10.8%, and 21.4% for ischemic stroke, and 23.3%; 7.9%, and 18.7% for large-artery stroke, respectively. CONCLUSIONS: This study supports that GERD increases susceptibility to stroke, ischemic stroke, and large-artery stroke, and is partially mediated by HTN, SBP, and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Refluxo Gastroesofágico , Hipertensão , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fatores de Risco , Refluxo Gastroesofágico/diagnóstico , Refluxo Gastroesofágico/epidemiologia , Refluxo Gastroesofágico/genética , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética
7.
Adv Sci (Weinh) ; 11(14): e2309993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326085

RESUMO

To address current challenges in effectively treating large skin defects caused by trauma in clinical medicine, the fabrication, and evaluation of a novel radially aligned nanofiber scaffold (RAS) with dual growth factor gradients is presented. These aligned nanofibers and the scaffold's spatial design provide many all-around "highways" for cell migration from the edge of the wound to the center area. Besides, the chemotaxis induced by two growth factor gradients further promotes cell migration. Incorporating epidermal growth factor (EGF) aids in the proliferation and differentiation of basal layer cells in the epidermis, augmenting the scaffold's ability to promote epidermal regeneration. Concurrently, the scaffold-bound vascular endothelial growth factor (VEGF) recruits vascular endothelial cells at the wound's center, resulting in angiogenesis and improving blood supply and nutrient delivery, which is critical for granulation tissue regeneration. The RAS+EGF+VEGF group demonstrates superior performance in wound immune regulation, wound closure, hair follicle regeneration, and ECM deposition and remodeling compared to other groups. This study highlights the promising potential of hierarchically assembled nanofiber scaffolds with dual growth factor gradients for wound repair and tissue regeneration applications.


Assuntos
Nanofibras , Nanofibras/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Fator de Crescimento Epidérmico/farmacologia , Células Endoteliais , Alicerces Teciduais , Cicatrização
8.
Sci Adv ; 10(6): eadk6722, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324693

RESUMO

Reconstructing extensive cranial defects represents a persistent clinical challenge. Here, we reported a hybrid three-dimensional (3D) printed scaffold with modification of QK peptide and KP peptide for effectively promoting endogenous cranial bone regeneration. The hybrid 3D printed scaffold consists of vertically aligned cryogel fibers that guide and promote cell penetration into the defect area in the early stages of bone repair. Then, the conjugated QK peptide and KP peptide further regulate the function of the recruited cells to promote vascularization and osteogenic differentiation in the defect area. The regenerated bone volume and surface coverage of the dual peptide-modified hybrid scaffold were significantly higher than the positive control group. In addition, the dual peptide-modified hybrid scaffold demonstrated sustained enhancement of bone regeneration and avoidance of bone resorption compared to the collagen sponge group. We expect that the design of dual peptide-modified hybrid scaffold will provide a promising strategy for bone regeneration.


Assuntos
Osteogênese , Alicerces Teciduais , Criogéis , Regeneração Óssea/fisiologia , Peptídeos , Impressão Tridimensional
9.
Adv Mater ; 36(16): e2307328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288789

RESUMO

Chronic wounds resulting from diabetes, pressure, radiation therapy, and other factors continue to pose significant challenges in wound healing. To address this, this study introduces a novel hybrid fibroin fibrous scaffold (FFS) comprising randomly arranged fibroin fibers and vertically aligned cryogel fibers (CFs). The fibroin scaffold is efficiently degummed at room temperature and simultaneously formed a porous structure. The aligned CFs are produced via directional freeze-drying, achieved by controlling solution concentration and freezing polymerization temperature. The incorporation of aligned CFs into the expanded fibroin fiber scaffold leads to enhanced cell infiltration both in vitro and in vivo, further elevating the hybrid scaffold's tissue compatibility. The anti-inflammatory peptide 1 (AP-1) is also conjugated to the hybrid fibrous scaffold, effectively transforming the inflammatory status of chronic wounds from pro-inflammatory to pro-reparative. Consequently, the FFS-AP1+CF group demonstrates superior granulation tissue formation, angiogenesis, collagen deposition, and re-epithelialization during the proliferative phase compared to the commercial product PELNAC. Moreover, the FFS-AP1+CF group displays epidermis thickness, number of regenerated hair follicles, and collagen density closer to normal skin tissue. These findings highlight the potential of random fibroin fibers/aligned CFs hybrid fibrous scaffold as a promising approach for skin tissue filling and tissue regeneration.


Assuntos
Fibroínas , Fibroínas/química , Criogéis , Cicatrização , Colágeno , Alicerces Teciduais/química , Anti-Inflamatórios , Seda
10.
Small ; 20(26): e2309868, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38259052

RESUMO

Critical-sized segmental long bone defects represent a challenging clinical dilemma in the management of battlefield and trauma-related injuries. The residual bone marrow cavity of damaged long bones contains many bone marrow mesenchymal stem cells (BMSCs), which provide a substantial source of cells for bone repair. Thus, a three-dimensional (3D) vertically aligned nanofiber scaffold (VAS) is developed with long channels and large pore size. The pore of VAS toward the bone marrow cavity after transplantation, enables the scaffolds to recruit BMSCs from the bone marrow cavity to the defect area. In vivo, it is found that VAS can significantly shorten gap distance and promote new bone formation compared to the control and collagen groups after 4 and 8 weeks of implantation. The single-cell sequencing results discovered that the 3D nanotopography of VAS can promote BMSCs differentiation to chondrocytes and osteoblasts, and up-regulate related gene expression, resulting in enhancing the activities of bone regeneration, endochondral ossification, bone trabecula formation, bone mineralization, maturation, and remodeling. The Alcian blue and bone morphogenetic protein 2 (BMP-2) immunohistochemical staining verified significant cartilage formation and bone formation in the VAS group, corresponding to the single-cell sequencing results. The study can inspire the design of next-generation scaffolds for effective long-bone regeneration is expected by the authors.


Assuntos
Regeneração Óssea , Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Nanofibras , Osteogênese , Alicerces Teciduais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Alicerces Teciduais/química , Animais
11.
Trends Biotechnol ; 42(5): 631-647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158307

RESUMO

Electrospinning technology has garnered wide attention over the past few decades in various biomedical applications including drug delivery, cell therapy, and tissue engineering. This technology can create nanofibers with tunable fiber diameters and functionalities. However, the 2D membrane nature of the nanofibers, as well as the rigidity and low porosity of electrospun fibers, lower their efficacy in tissue repair and regeneration. Recently, new avenues have been explored to resolve the challenges associated with 2D electrospun nanofiber membranes. This review discusses recent trends in creating different electrospun nanofiber microstructures from 2D nanofiber membranes by using various post-processing methods, as well as their biotechnological applications.


Assuntos
Biotecnologia , Nanofibras , Engenharia Tecidual , Nanofibras/química , Biotecnologia/métodos , Engenharia Tecidual/métodos , Sistemas de Liberação de Medicamentos , Humanos , Materiais Biocompatíveis/química , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA