Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Acc Chem Res ; 55(23): 3481-3494, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472093

RESUMO

The development of palladium-catalyzed cross-coupling methods for the activation of C(sp2)-Br bonds facilitated access to arene-rich molecules, enabling a concomitant increase in the prevalence of this structural motif in drug molecules in recent decades. Today, there is a growing appreciation of the value of incorporating saturated C(sp3)-rich scaffolds into pharmaceutically active molecules as a means to achieve improved solubility and physiological stability, providing the impetus to develop new coupling strategies to access these challenging motifs in the most straightforward way possible. As an alternative to classical two-electron chemistry, redox chemistry can enable access to elusive transformations, most recently, by interfacing abundant first-row transition-metal catalysis with photoredox catalysis. As such, the functionalization of ubiquitous and versatile functional handles such as (aliphatic) carboxylic acids via metallaphotoredox catalysis has emerged as a valuable field of research over the past eight years.In this Account, we will outline recent progress in the development of methodologies that employ aliphatic and (hetero)aromatic carboxylic acids as adaptive functional groups. Whereas recent decarboxylative functionalization methodologies often necessitate preactivated aliphatic carboxylic acids in the form of redox-active esters or as ligands for hypervalent iodine reagents, methods that enable the direct use of the native carboxylic acid functionality are highly desired and have been accomplished through metallaphotoredox protocols. As such, we found that bench-stable aliphatic carboxylic acids can undergo diverse transformations, such as alkylation, arylation, amination, and trifluoromethylation, by leveraging metallaphotoredox catalysis with prevalent first-row transition metals such as nickel and copper. Likewise, abundant aryl carboxylic acids are now able to undergo halogenation and borylation, enabling new entry points for traditional, primarily palladium- or copper-catalyzed cross-coupling strategies. Given the breadth of the functional group tolerance of the employed reaction conditions, the late-stage functionalization of abundant carboxylic acids toward desired targets has become a standard tool in reaction design, enabling the synthesis of various diversified drug molecules. The rapid rise of this field has positively inspired pharmaceutical discovery and will be further accelerated by novel reaction development. The achievement of generality through reaction optimization campaigns allows for future breakthroughs that can render protocols more reliable and applicable for industry. This article is intended to highlight, in particular, (i) the employment of aliphatic and (hetero)aryl carboxylic acids as powerful late-stage adaptive functional handles in drug discovery and (ii) the need for the further development of still-elusive and selective transformations.We strongly believe that access to native functionalities such as carboxylic acids as adaptive handles will further inspire researchers across the world to investigate new methodologies for complex molecular targets.


Assuntos
Ácidos Carboxílicos , Elementos de Transição , Ácidos Carboxílicos/química , Paládio/química , Cobre/química , Catálise , Níquel/química
2.
J Am Chem Soc ; 144(18): 8296-8305, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35486956

RESUMO

Aryl halides are a fundamental motif in synthetic chemistry, playing a critical role in metal-mediated cross-coupling reactions and serving as important scaffolds in drug discovery. Although thermal decarboxylative functionalization of aryl carboxylic acids has been extensively explored, the scope of existing halodecarboxylation methods remains limited, and there currently exists no unified strategy that provides access to any type of aryl halide from an aryl carboxylic acid precursor. Herein, we report a general catalytic method for direct decarboxylative halogenation of (hetero)aryl carboxylic acids via ligand-to-metal charge transfer. This strategy accommodates an exceptionally broad scope of substrates. We leverage an aryl radical intermediate toward divergent functionalization pathways: (1) atom transfer to access bromo- or iodo(hetero)arenes or (2) radical capture by copper and subsequent reductive elimination to generate chloro- or fluoro(hetero)arenes. The proposed ligand-to-metal charge transfer mechanism is supported through an array of spectroscopic studies.


Assuntos
Ácidos Carboxílicos , Halogenação , Ácidos Carboxílicos/química , Catálise , Cobre/química , Ligantes
3.
J Am Chem Soc ; 144(14): 6163-6172, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377627

RESUMO

We report a copper-catalyzed strategy for arylboronic ester synthesis that exploits photoinduced ligand-to-metal charge transfer (LMCT) to convert (hetero)aryl acids into aryl radicals amenable to ambient-temperature borylation. This near-UV process occurs under mild conditions, requires no prefunctionalization of the native acid, and operates broadly across diverse aryl, heteroaryl, and pharmaceutical substrates. We also report a one-pot procedure for decarboxylative cross-coupling that merges catalytic LMCT borylation and palladium-catalyzed Suzuki-Miyaura arylation, vinylation, or alkylation with organobromides to access a range of value-added products. The utility of these protocols is highlighted through the development of a heteroselective double-decarboxylative C(sp2)-C(sp2) coupling sequence, pairing copper-catalyzed LMCT borylation and halogenation processes of two distinct acids (including pharmaceutical substrates) with subsequent Suzuki-Miyaura cross-coupling.


Assuntos
Cobre , Paládio , Catálise , Preparações Farmacêuticas
4.
Angew Chem Int Ed Engl ; 58(41): 14584-14588, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31410960

RESUMO

Here, we demonstrate that a metallaphotoredox-catalyzed cross-electrophile coupling mechanism provides a unified method for the α-arylation of diverse activated alkyl chlorides, including α-chloroketones, α-chloroesters, α-chloroamides, α-chlorocarboxylic acids, and benzylic chlorides. This strategy, which is effective for a wide variety of aryl bromide coupling partners, is predicated upon a halogen atom abstraction/nickel radical-capture mechanism that is generically successful across an extensive range of carbonyl substrates. The construction and use of arylacetic acid products have further enabled two-step protocols for the delivery of valuable building blocks for medicinal chemistry, such as aryldifluoromethyl and diarylmethane motifs.


Assuntos
Hidrocarbonetos Cíclicos/síntese química , Metais/química , Catálise , Hidrocarbonetos Cíclicos/química , Ligação de Hidrogênio , Estrutura Molecular , Oxirredução
5.
Science ; 360(6392): 1010-1014, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853683

RESUMO

Transition metal-catalyzed arene functionalization has been widely used for molecular synthesis over the past century. In this arena, copper catalysis has long been considered a privileged platform due to the propensity of high-valent copper to undergo reductive elimination with a wide variety of coupling fragments. However, the sluggish nature of oxidative addition has limited copper's capacity to broadly facilitate haloarene coupling protocols. Here, we demonstrate that this copper oxidative addition problem can be overcome with an aryl radical-capture mechanism, wherein the aryl radical is generated through a silyl radical halogen abstraction. This strategy was applied to a general trifluoromethylation of aryl bromides through dual copper-photoredox catalysis. Mechanistic studies support the formation of an open-shell aryl species.

6.
Science ; 356(6344): 1272-1276, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28642435

RESUMO

The biological properties of trifluoromethyl compounds have led to their ubiquity in pharmaceuticals, yet their chemical properties have made their preparation a substantial challenge, necessitating innovative chemical solutions. We report the serendipitous discovery of a borane-catalyzed formal C(sp3)-CF3 reductive elimination from Au(III) that accesses these compounds by a distinct mechanism proceeding via fluoride abstraction, migratory insertion, and C-F reductive elimination to achieve a net C-C bond construction. The parent bis(trifluoromethyl)Au(III) complexes tolerate a surprising breadth of synthetic protocols, enabling the synthesis of complex organic derivatives without cleavage of the Au-C bond. This feature, combined with the "fluoride-rebound" mechanism, was translated into a protocol for the synthesis of 18F-radiolabeled aliphatic CF3-containing compounds, enabling the preparation of potential tracers for use in positron emission tomography.


Assuntos
Química Farmacêutica/métodos , Fluoretos/química , Radioquímica/métodos , Boranos/química , Técnicas de Química Sintética , Ouro/química , Tomografia por Emissão de Pósitrons , Traçadores Radioativos
7.
J Am Chem Soc ; 139(24): 8251-8258, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28535677

RESUMO

The mechanisms and selectivities of the cycloadditions of tropone to dimethylfulvene have been investigated with M06-2X and B3LYP-D3 density functional theory (DFT) calculations and quasi-classical direct molecular dynamics simulations. The originally proposed reaction mechanism (Houk) involves a highly peri-, regio-, and stereoselective [6F + 4T] cycloaddition of tropone [4π] to dimethylfulvene [6π], followed by a [1,5] hydrogen shift, and, finally, a second [6 + 4] cycloaddition of tropone [6π] to the cyclopentadiene moiety [4π]. Paddon-Row and Warrener proposed an alternative mechanism: the initial cycloaddition involves a different [6T + 4F] cycloaddition in which fulvene acts as the 4π component, and a subsequent Cope rearrangement produces the formal [6F + 4T] adduct. Computations now demonstrate that the initial cycloaddition proceeds via an ambimodal transition state that can lead to both of the proposed [6 + 4] adducts. These adducts can interconvert through a [3,3] sigmatropic shift (Cope rearrangement). Molecular dynamics simulations reveal the initial distribution of products and provide insights into the time-resolved mechanism of this ambimodal cycloaddition. Competing [4 + 2] cycloadditions and various sigmatropic shifts are also explored.

8.
J Org Chem ; 80(21): 11039-47, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26466172

RESUMO

Density functional theory calculations were performed on a set of 13 transannular Diels-Alder (TADA) reactions with 10-18-membered rings. The results were compared with those for bimolecular and intramolecular Diels-Alder reactions in order to investigate the controlling factors of the high TADA reactivities. The effects of tether length, heteroatoms, and alkynyl dienophiles on reactivity were analyzed. We found a correlation between tether length and reactivity, specifically with 12-membered macrocycles undergoing cycloaddition most readily. Furthermore, modifying 12-membered macrocycles by heteroatom substitution and utilizing alkynyl dienophiles enhances the reaction rates up to 10(5)-fold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA