Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Neurol Genet ; 10(3): e200162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841628

RESUMO

Background and Objectives: Spinocerebellar ataxia type 3 (SCA3) is a hereditary ataxia that occurs worldwide. Clinical patterns were observed, including the one characterized by marked spastic paraplegia. This study investigated the clinical features, disease progression, and multiparametric imaging aspects of patients with SCA3. Methods: We retrospectively analyzed 249 patients with SCA3 recruited from the Organization for Southeast China for cerebellar ataxia research between October 2014 and December 2020. Of the 249 patients, 145 were selected and assigned to 2 groups based on neurologic examination: SCA3 patients with spastic paraplegia (SCA3-SP) and SCA3 patients with nonspastic paraplegia (SCA3-NSP). Participants underwent 3.0-T brain MRI examinations, and voxel-wise and volume-of-interest-based approaches were used for the resulting images. A tract-based spatial statistical approach was used to investigate the white matter (WM) alterations using diffusion tensor imaging, neurite orientation dispersion, and density imaging metrics. Multiple linear regression analyses were performed to compare the clinical and imaging parameters between the 2 groups. The longitudinal data were evaluated using a linear mixed-effects model. Results: Forty-three patients with SCA3-SP (mean age, 37.58years ± 11.72 [SD]; 18 women) and 102 patients with SCA3-NSP (mean age, 47.42years ± 12.50 [SD]; 39 women) were analyzed. Patients with SCA3-SP were younger and had a lower onset age but a larger cytosine-adenine-guanine repeat number, as well as higher clinical severity scores (all corrected p < 0.05). The estimated progression rates of the Scale for the Assessment and Rating of Ataxia (SARA) and International Cooperative Ataxia Rating Scale scores were higher in the SCA3-SP subgroup than in the SCA3-NSP subgroup (SARA, 2.136 vs 1.218 points; ICARS, 5.576 vs 3.480 points; both p < 0.001). In addition, patients with SCA3-SP showed gray matter volume loss in the precentral gyrus with a decreased neurite density index in the WM of the corticospinal tract and cerebellar peduncles compared with patients with SCA3-NSP. Discussion: SCA3-SP differs from SCA3-NSP in clinical features, multiparametric brain imaging findings, and longitudinal follow-up progression.

2.
Adv Ther ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722537

RESUMO

INTRODUCTION: Spinal muscular atrophy (SMA) is a rare, autosomal recessive, neuromuscular disease that leads to progressive muscular weakness and atrophy. Nusinersen, an antisense oligonucleotide, was approved for SMA in China in February 2019. We report interim results from a post-marketing surveillance phase 4 study, PANDA (NCT04419233), that collects data on the safety, efficacy, and pharmacokinetics of nusinersen in children with SMA in routine clinical practice in China. METHODS: Participants enrolled in PANDA will be observed for 2 years following nusinersen treatment initiation. The primary endpoint is the incidence of adverse events (AEs)/serious AEs (SAEs) during the treatment period. Efficacy assessments include World Health Organization (WHO) Motor Milestones assessment, the Hammersmith Infant Neurological Examination (HINE), and ventilation support. Plasma and cerebrospinal fluid (CSF) concentrations of nusinersen are measured at each dose visit. RESULTS: Fifty participants were enrolled as of the January 4, 2023, data cutoff: 10 with infantile-onset (≤ 6 months) and 40 with later-onset (> 6 months) SMA. All 50 participants have received at least one dose of nusinersen; 6 have completed the study. AEs were experienced by 45 (90%) participants and were mostly mild/moderate; no AEs led to nusinersen discontinuation or study withdrawal. Eleven participants experienced SAEs, most commonly pneumonia (n = 9); none were considered related to study treatment. Stability or gain of WHO motor milestone was observed and mean HINE-2 scores improved in both subgroups throughout the study. No serious respiratory events occurred, and no permanent ventilation support was initiated during the study. Pre-dose nusinersen CSF concentrations increased steadily through the loading-dose period, with no accumulation in plasma after multiple doses. CONCLUSION: Nusinersen was generally well tolerated with an acceptable overall safety profile, consistent with the known safety of nusinersen. Efficacy, safety, and nusinersen exposure are consistent with prior observations. These results support continuing PANDA and evaluation of nusinersen in Chinese participants with SMA. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT04419233.

3.
Mol Ther Nucleic Acids ; 35(2): 102165, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571746

RESUMO

Duchenne muscular dystrophy (DMD) is the most prevalent herediatry disease in men, characterized by dystrophin deficiency, progressive muscle wasting, cardiac insufficiency, and premature mortality, with no effective therapeutic options. Here, we investigated whether adenine base editing can correct pathological nonsense point mutations leading to premature stop codons in the dystrophin gene. We identified 27 causative nonsense mutations in our DMD patient cohort. Treatment with adenine base editor (ABE) could restore dystrophin expression by direct A-to-G editing of pathological nonsense mutations in cardiomyocytes generated from DMD patient-derived induced pluripotent stem cells. We also generated two humanized mouse models of DMD expressing mutation-bearing exons 23 or 30 of human dystrophin gene. Intramuscular administration of ABE, driven by ubiquitous or muscle-specific promoters could correct these nonsense mutations in vivo, albeit with higher efficiency in exon 30, restoring dystrophin expression in skeletal fibers of humanized DMD mice. Moreover, a single systemic delivery of ABE with human single guide RNA (sgRNA) could induce body-wide dystrophin expression and improve muscle function in rotarod tests of humanized DMD mice. These findings demonstrate that ABE with human sgRNAs can confer therapeutic alleviation of DMD in mice, providing a basis for development of adenine base editing therapies in monogenic diseases.

4.
Brain Pathol ; : e13261, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602336

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, pathologically characterized by TDP-43 aggregates. Recent evidence has been indicated that phosphorylated TDP-43 (pTDP-43) is present not only in motor neurons but also in muscle tissues. However, it is unclear whether testing pTDP-43 aggregation in muscle tissue would assist in the diagnosis of ALS. We propose three key questions: (i) Is aggregation of pTDP-43 detectable in routine biopsied muscles? (ii) Can detection of pTDP-43 aggregation discriminate between ALS and non-ALS patients? (iii) Can pTDP-43 aggregation be observed in the early stages of ALS? We conducted a diagnostic study comprising 2 groups: an ALS group in which 18 cases underwent muscle biopsy screened from a registered ALS cohort consisting of 802 patients and a non-ALS control group, in which we randomly selected 54 muscle samples from a biospecimen bank of 684 patients. Among the 18 ALS patients, 3 patients carried pathological GGGGCC repeats in the C9ORF72 gene, 2 patients carried SOD1 mutations, and 7 patients were at an early stage with only one body region clinically affected. The pTDP-43 accumulation could be detected in routine biopsied muscles, including biceps brachii, deltoid, tibialis anterior, and quadriceps. Abnormal aggregation of pTDP-43 was present in 94.4% of ALS patients (17/18) compared to 29.6% of non-ALS controls (16/54; p < 0.001). The pTDP-43 aggregates were mainly close to the sarcolemma. Using a semi-quantified pTDP-43 aggregates score, we applied a cut-off value of 3 as a diagnostic biomarker, resulting in a sensitivity of 94.4% and a specificity of 83.3%. Moreover, we observed that accumulation of pTDP-43 occurred in muscle tissues prior to clinical symptoms and electromyographic lesions. Our study provides proof-of-concept for the detection of pTDP-43 accumulation via routine muscle biopsy which may serve as a novel biomarker for diagnosis of ALS.

5.
J Neurol ; 271(2): 918-928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37848650

RESUMO

BACKGROUND: Many neuroscience and neurology studies have forced a reconsideration of the traditional motor-related scope of cerebellar function, which has now expanded to include various cognitive functions. Spinocerebellar ataxia type 3 (SCA3; the most common hereditary ataxia) is neuropathologically characterized by cerebellar atrophy and frequently presents with cognitive impairment. OBJECTIVE: To characterize cognitive impairment in SCA3 and investigate the cerebellum-cognition associations. METHODS: This prospective, cross-sectional cohort study recruited 126 SCA3 patients and 41 healthy control individuals (HCs). Participants underwent a brain 3D T1-weighted images as well as neuropsychological tests. Voxel-based morphometry (VBM) and region of interest (ROI) approaches were performed on the 3D T1-weighted images. CERES was used to automatically segment cerebellums. Patients were grouped into cognitively impaired (CI) and cognitively preserved (CP), and clinical and MRI parameters were compared. Multivariable regression models were fitted to examine associations between cerebellar microstructural alterations and cognitive domain impairments. RESULTS: Compared to HCs, SCA3 patients showed cognitive domain impairments in information processing speed, verbal memory, executive function, and visuospatial perception. Between CI and CP subgroups, the CI subgroup was older and had lower education, as well as higher severity scores. VBM and ROI analyses revealed volume loss in cerebellar bilateral lobule VI, right lobule Crus I, and right lobule IV of the CI subgroup, and all these cerebellar lobules were associated with the above cognitive domain impairments. CONCLUSIONS: Our findings demonstrate the multiple cognitive domain impairments in SCA3 patients and indicate the responsible cerebellar lobules for the impaired cognitive domain(s).


Assuntos
Disfunção Cognitiva , Doença de Machado-Joseph , Humanos , Cerebelo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Estudos Transversais , Doença de Machado-Joseph/complicações , Doença de Machado-Joseph/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos
6.
Mov Disord ; 39(1): 152-163, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014483

RESUMO

BACKGROUND: Hereditary spastic paraplegias (HSP) are neurologic disorders characterized by progressive lower-extremity spasticity. Despite the identification of several HSP-related genes, many patients lack a genetic diagnosis. OBJECTIVES: The aims were to confirm the pathogenic role of biallelic COQ4 mutations in HSP and elucidate the clinical, genetic, and functional molecular features of COQ4-associated HSP. METHODS: Whole exome sequences of 310 index patients with HSP of unknown cause from three distinct populations were analyzed to identify potential HSP causal genes. Clinical data obtained from patients harboring candidate causal mutations were examined. Functional characterization of COQ4 variants was performed using bioinformatic tools, single-cell RNA sequencing, biochemical assays in cell lines, primary fibroblasts, induced pluripotent stem cell-derived pyramidal neurons, and zebrafish. RESULTS: Compound heterozygous variants in COQ4, which cosegregated with HSP in pedigrees, were identified in 7 patients from six unrelated families. Patients from four of the six families presented with pure HSP, whereas probands of the other two families exhibited complicated HSP with epilepsy or with cerebellar ataxia. In patient-derived fibroblasts and COQ4 knockout complementation lines, stable expression of these missense variants exerted loss-of-function effects, including mitochondrial reactive oxygen species accumulation, decreased mitochondrial membrane potential, and lower ubiquinone biosynthesis. Whereas differentiated pyramidal neurons expressed high COQ4 levels, coq4 knockdown zebrafish displayed severe motor dysfunction, reflecting motor neuron dysregulation. CONCLUSIONS: Our study confirms that loss-of-function, compound heterozygous, pathogenic COQ4 variants are causal for autosomal recessive pure and complicated HSP. Moreover, reduced COQ4 levels attributable to variants correspond with decreased ubiquinone biosynthesis, impaired mitochondrial function, and higher phenotypic disease severity. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Paraplegia Espástica Hereditária , Peixe-Zebra , Animais , Humanos , Ubiquinona/genética , Paraplegia Espástica Hereditária/genética , Mutação/genética , Mutação de Sentido Incorreto , Proteínas Mitocondriais/genética
7.
J Genet Genomics ; 51(2): 184-196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159879

RESUMO

CGG repeat expansions in LOC642361/NUTM2B-AS1 have recently been identified as a cause of oculopharyngeal myopathy with leukoencephalopathy. However, since only three patients from a single family were reported, it remains unknown whether their clinicopathological features are typical for CGG repeat expansions in LOC642361/NUTM2B-AS1. Here, using repeat-primed-polymerase chain reaction and long-read sequencing, we identify 12 individuals from 3 unrelated families with CGG repeat expansions in LOC642361/NUTM2B-AS1, typically presenting with oculopharyngodistal myopathy. The CGG repeat expansions range from 161 to 669 repeat units. Most of the patients present with ptosis, restricted eye movements, dysphagia, dysarthria, and diffuse limb muscle weakness. Only one patient shows T2-weighted hyperintensity in the cerebellar white matter surrounding the deep cerebellar nuclei on brain magnetic resonance imaging. Muscle biopsies from three patients show a myopathic pattern and rimmed vacuoles. Analyses of muscle biopsies suggest that CGG repeat expansions in LOC642361/NUTM2B-AS1 may deleteriously affect aggrephagic capacity, suggesting that RNA toxicity and mitochondrial dysfunction may contribute to pathogenesis. Our study thus expands the phenotypic spectrum for the CGG repeat expansion of LOC642361/NUTM2B-AS1 and indicates that this genetic variant typically manifests as oculopharyngodistal myopathy with chronic myopathic changes with rimmed vacuoles and filamentous intranuclear inclusions in muscle fibers.


Assuntos
Doenças Musculares , Distrofias Musculares , Humanos , Debilidade Muscular , Doenças Musculares/genética , Doenças Musculares/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia
10.
Mov Disord ; 38(9): 1750-1755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394769

RESUMO

OBJECTIVES: To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. METHODS: Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were performed. Reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing were used to characterize target regions of SPAST. RESULTS: A 121-bp AluYb9 insertion with a 30-bp poly-A tail flanked by 15-bp direct repeats on both sides was identified in the edge of intron 16 in SPAST that segregated with the disease phenotype. CONCLUSIONS: We identified an intronic AluYb9 insertion inducing splicing alteration in SPAST causing pure HSP phenotype that was not detected by routine WES analysis. Our findings suggest RNA-seq is a recommended implementation for undiagnosed cases by first-line diagnostic approaches. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico , Espastina/genética , Adenosina Trifosfatases/genética , Fenótipo , Íntrons/genética , Mutação
13.
Ann Neurol ; 93(2): 244-256, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088542

RESUMO

OBJECTIVE: Despite the increasing number of genes associated with Charcot-Marie-Tooth (CMT) disease, many patients currently still lack appropriate genetic diagnosis for this disease. Autosomal dominant mutations in aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT. Here, we describe causal missense mutations in the gene encoding seryl-tRNA synthetase 1 (SerRS) for 3 families affected with CMT. METHODS: Whole-exome sequencing was performed in 16 patients and 14 unaffected members of 3 unrelated families. The functional impact of the genetic variants identified was investigated using bioinformatic prediction tools and confirmed using cellular and biochemical assays. RESULTS: Combined linkage analysis for the 3 families revealed significant linkage (Zmax LOD = 6.9) between the genomic co-ordinates on chromosome 1: 108681600-110300504. Within the linkage region, heterozygous SerRS missense variants segregated with the clinical phenotype in the 3 families. The mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation. INTERPRETATION: Our findings suggest the heterozygous SerRS variants identified represent a novel cause for autosomal dominant CMT. Mutant SerRS proteins are known to impact various molecular and cellular functions. Our findings provide significant advances on the current understanding of the molecular mechanisms associated with ARS-related CMT. ANN NEUROL 2023;93:244-256.


Assuntos
Doença de Charcot-Marie-Tooth , Serina-tRNA Ligase , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Serina-tRNA Ligase/genética , Mutação , Heterozigoto , Mutação de Sentido Incorreto/genética
14.
Parkinsonism Relat Disord ; 106: 105236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529111

RESUMO

OBJECTIVE: Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant ataxia globally. No effective treatment is currently available for SCA3. Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive form of brain stimulation, demonstrated to improve symptoms in patients with neurodegenerative cerebellar ataxias. The present study investigated whether treatment with rTMS over the cerebellum for 15 consecutive days improved measures of ataxia in SCA3 patients. METHODS: A double-blind, prospective, randomized, sham-controlled trial was carried out on 44 SCA3 patients. Participants were randomly assigned to two groups: real or sham stimulation. Each participant underwent 30 minutes of 1Hz rTMS stimulation (a total of 900 pulses) for 15 consecutive days. The primary outcome measure was the score on the International Cooperative Ataxia Rating Scale (ICARS), and secondary outcomes were from the Scale for the Assessment and Rating of Ataxia (SARA) and the Berg Balance Scale (BBS). RESULTS: Nausea was the only adverse effect reported by 2 participants from the sham and real group. After 15 days of treatment, there was a significant improvement in all performance scores in both real and sham stimulation groups. However, compared to the sham group, the improvements were significantly larger in the real group for the ICARS (P = 0.002), SARA (P = 0.001), and BBS (P = 0.001). INTERPRETATION: A 15 days treatment with rTMS over the cerebellum improves the symptoms of ataxia in SCA3 patients. Our results suggest that rTMS is a promising tool for future rehabilitative approaches in SCA3.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/terapia , Estimulação Magnética Transcraniana/métodos , Estudos Prospectivos , Ataxia , Resultado do Tratamento , Método Duplo-Cego
15.
Neurosci Bull ; 39(4): 659-674, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36469195

RESUMO

Primary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.


Assuntos
Encefalopatias , Animais , Encefalopatias/genética , Encefalopatias/terapia , Receptor do Retrovírus Politrópico e Xenotrópico , Encéfalo/patologia
16.
Cell Discov ; 8(1): 128, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36443312

RESUMO

Brain calcification is a critical aging-associated pathology and can cause multifaceted neurological symptoms. Cerebral phosphate homeostasis dysregulation, blood-brain barrier defects, and immune dysregulation have been implicated as major pathological processes in familial brain calcification (FBC). Here, we analyzed two brain calcification families and identified calcification co-segregated biallelic variants in the CMPK2 gene that disrupt mitochondrial functions. Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) isolated from these patients showed impaired mitochondria-associated metabolism pathways. In situ hybridization and single-cell RNA sequencing revealed robust Cmpk2 expression in neurons and vascular endothelial cells (vECs), two cell types with high energy expenditure in the brain. The neurons in Cmpk2-knockout (KO) mice have fewer mitochondrial DNA copies, down-regulated mitochondrial proteins, reduced ATP production, and elevated intracellular inorganic phosphate (Pi) level, recapitulating the mitochondrial dysfunction observed in the PBMCs isolated from the FBC patients. Morphologically, the cristae architecture of the Cmpk2-KO murine neurons was also impaired. Notably, calcification developed in a progressive manner in the homozygous Cmpk2-KO mice thalamus region as well as in the Cmpk2-knock-in mice bearing the patient mutation, thus phenocopying the calcification pathology observed in the patients. Together, our study identifies biallelic variants of CMPK2 as novel genetic factors for FBC; and demonstrates how CMPK2 deficiency alters mitochondrial structures and functions, thereby highlighting the mitochondria dysregulation as a critical pathogenic mechanism underlying brain calcification.

17.
Mol Brain ; 15(1): 65, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35870928

RESUMO

Primary familial brain calcification (PFBC) is a neurogenetic disorder characterized by bilateral calcified deposits in the brain. We previously identified that MYORG as the first pathogenic gene for autosomal recessive PFBC, and established a Myorg-KO mouse model. However, Myorg-KO mice developed brain calcifications until nine months of age, which limits their utility as a facile PFBC model system. Hence, whether there is another typical animal model for mimicking PFBC phenotypes in an early stage still remained unknown. In this study, we profiled the mRNA expression pattern of myorg in zebrafish, and used a morpholino-mediated blocking strategy to knockdown myorg mRNA at splicing and translation initiation levels. We observed multiple calcifications throughout the brain by calcein staining at 2-4 days post-fertilization in myorg-deficient zebrafish, and rescued the calcification phenotype by replenishing myorg cDNA. Overall, we built a novel model for PFBC via knockdown of myorg by antisense oligonucleotides in zebrafish, which could shorten the observation period and replenish the Myorg-KO mouse model phenotype in mechanistic and therapeutic studies.


Assuntos
Encefalopatias , Calcinose , Doenças Neurodegenerativas , Animais , Encéfalo/metabolismo , Encefalopatias/genética , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia , Camundongos , Mutação , Doenças Neurodegenerativas/metabolismo , Linhagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/genética
18.
Ann Neurol ; 92(3): 512-526, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35700120

RESUMO

OBJECTIVE: Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized by progressive ptosis, dysarthria, ophthalmoplegia, and distal muscle weakness. Recent studies revealed that GGC repeat expansions in 5'-UTR of LRP12, GIPC1, and NOTCH2NLC are associated with OPDM. Despite these advances, approximately 30% of OPDM patients remain genetically undiagnosed. Herein, we aim to investigate the genetic basis for undiagnosed OPDM patients in two unrelated Chinese Han families. METHODS: Parametric linkage analysis was performed. Long-read sequencing followed by repeat-primed polymerase chain reaction and amplicon length polymerase chain reaction were used to determine the genetic cause. Targeted methylation sequencing was implemented to detect epigenetic changes. The possible pathogenesis mechanism was investigated by quantitative polymerase chain reaction, immunoblotting, RNA fluorescence in situ hybridization, and immunofluorescence staining of muscle biopsy samples. RESULTS: The disease locus was mapped to 12q24.3. Subsequently, GGC repeat expansion in the promoter region of RILPL1 was identified in six OPDM patients from two families, findings consistent with a founder effect, designated as OPDM type 4. Targeted methylation sequencing revealed hypermethylation at the RILPL1 locus in unaffected individuals with ultralong expansion. Analysis of muscle samples showed no significant differences in RILPL1 mRNA or RILPL1 protein levels between patients and controls. Public CAGE-seq data indicated that alternative transcription start sites exist upstream of the RefSeq-annotated RILPL1 transcription start site. Strand-specific RNA-seq data revealed bidirectional transcription from the RILPL1 locus. Finally, fluorescence in situ hybridization/immunofluorescence staining showed that both sense and antisense transcripts formed RNA foci, and were co-localized with hnRNPA2B1 and p62 in the intranuclear inclusions of OPDM type 4 patients. INTERPRETATION: Our findings implicate abnormal GGC repeat expansions in the promoter region of RILPL1 as a novel genetic cause for OPDM, and suggest a methylation mechanism and a potential RNA toxicity mechanism are involved in OPDM type 4 pathogenesis. ANN NEUROL 2022;92:512-526.


Assuntos
Distrofias Musculares , Adulto , Humanos , Hibridização in Situ Fluorescente , Corpos de Inclusão Intranuclear/patologia , Distrofias Musculares/genética , Linhagem , RNA , Expansão das Repetições de Trinucleotídeos/genética
20.
BMJ Open ; 12(1): e054011, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017251

RESUMO

INTRODUCTION: Hereditary spastic paraplegias (HSPs) are uncommon but not rare neurodegenerative diseases. More than 100 pathogenic genes and loci related to spastic paraplegia symptoms have been reported. HSPs have the same core clinical features, including progressive spasticity in the lower limbs, though HSPs are heterogeneous (eg, clinical signs, MRI features, gene mutation). The age of onset varies greatly, from infant to adulthood. In addition, the slow and variable rates of disease progression in patients with HSP represent a substantial challenge for informative assessment of therapeutic efficacy. To address this, we are undertaking a prospective cohort study to investigate genetic-clinical characteristics, find surrogates for monitoring disease progress and identify clinical readouts for treatment. METHODS AND ANALYSIS: In this case-control cohort study, we will enrol 200 patients with HSP and 200 healthy individuals in parallel. Participants will be continuously assessed for 3 years at 12-month intervals. Six aspects, including clinical signs, genetic spectrum, cognitive competence, MRI features, potential biochemical indicators and nerve electrophysiological factors, will be assessed in detail. This study will observe clinical manifestations and disease severity based on different molecular mechanisms, including oxidative stress, cholesterol metabolism and microtubule dynamics, all of which have been proposed as potential treatment targets or modalities. The analysis will also assess disease progression in different types of HSPs and cellular pathways with a longitudinal study using t tests and χ2 tests. ETHICS AND DISSEMINATION: The study was granted ethics committee approval by the first affiliated hospital of Fujian Medical University (MRCTA, ECFAH of FMU (2019)194) in 2019. Findings will be disseminated via presentations and peer-reviewed publications. Dissemination will target different audiences, including national stakeholders, researchers from different disciplines and the general public. TRIAL REGISTRATION NUMBER: NCT04006418.


Assuntos
Paraplegia Espástica Hereditária , Adulto , Estudos de Casos e Controles , China , Estudos de Coortes , Hospitais , Humanos , Estudos Longitudinais , Mutação , Estudos Prospectivos , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA