Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36011360

RESUMO

The type-B authentic response regulators (type-B ARRs) are positive regulators of cytokinin signaling and involved in plant growth and stress responses. In this study, we used bioinformatics, RNA-seq, and qPCR to study the phylogenetic and expression pattern of 35 type-B ARRs in Brassica napus. The BnARRs experienced gene expansion and loss during genome polyploidization and were classified into seven groups. Whole-genome duplication (WGD) and segmental duplication were the main forces driving type-B ARR expansion in B. napus. Several BnARRs with specific expression patterns during rapeseed development were identified, including BnARR12/14/18/23/33. Moreover, we found the type-B BnARRs were involved in rapeseed development and stress responses, through participating in cytokinin and ABA signaling pathways. This study revealed the origin, evolutionary history, and expression pattern of type-B ARRs in B. napus and will be helpful to the functional characterization of BnARRs.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Citocininas , Duplicação Gênica , Genes de Plantas , Genes Reguladores , Genoma de Planta/genética , Filogenia
2.
Eur J Pharmacol ; 810: 57-62, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28610841

RESUMO

Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Colesterol/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteína Quinase C/metabolismo , Fator de Transcrição Sp1/metabolismo , Transporte Biológico , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Transdução de Sinais
3.
Biochimie ; 106: 81-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149060

RESUMO

BACKGROUND: Accumulating evidence suggests that microRNA-590 (miR-590) has protective effects on cardiovascular diseases, but the mechanism is unknown. Interestingly, previous studies from our laboratory and others have shown that macrophage-derived lipoprotein lipase (LPL) might accelerate atherosclerosis by promoting lipid accumulation and inflammatory response. However, the regulation of LPL at the post-transcriptional level by microRNAs has not been fully understood. In this study, we explored whether miR-590 affects the expression of LPL and its potential subsequent effects on lipid accumulation and pro-inflammatory cytokine secretion in human THP-1 macrophages. METHODS AND RESULTS: Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-590 directly inhibited LPL protein and mRNA expression by targeting LPL 3'UTR. LPL Activity Assays showed that miR-590 reduced LPL activity in the culture media. Oil Red O staining and high-performance liquid chromatography assays showed that miR-590 had inhibitory effects on the lipid accumulation in human THP-1 macrophages. We also illustrated that miR-590 alleviated pro-inflammatory cytokine secretion in human THP-1 macrophages as measured by ELISA. With the method of small interfering RNA, we found that LPL siRNA can inhibit the miR-590 inhibitor-induced increase in lipid accumulation and secretion of pro-inflammatory cytokines in oxLDL-treated human THP-1 macrophages. CONCLUSIONS: MiR-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting LPL gene in human THP-1 macrophages. Therefore, targeting miR-590 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.


Assuntos
Citocinas/metabolismo , Lipídeos/análise , Lipase Lipoproteica/genética , Macrófagos/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Expressão Gênica , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
4.
Atherosclerosis ; 234(1): 54-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24608080

RESUMO

RATIONALE: Macrophage cholesterol homeostasis maintenance is the result of a balance between influx, endogenous synthesis, esterification/hydrolysis and efflux. Excessive accumulation of cholesterol leads to foam cell formation, which is the major pathology of atherosclerosis. Previous studies have shown that miR-27 (miR-27a and miR-27b) may play a key role in the progression of atherosclerosis. OBJECTIVE: We set out to investigate the molecular mechanisms of miR-27a/b in intracellular cholesterol homeostasis. METHODS AND RESULTS: In the present study, our results have shown that the miR-27 family is highly conserved during evolution, present in mammals and directly targets the 3' UTR of ABCA1, LPL, and ACAT1. apoA1, ABCG1 and SR-B1 lacking miR-27 bind sites should not be influenced by miR-27 directly. miR-27a and miR-27b directly regulated the expression of endogenous ABCA1 in different cells. Treatment with miR-27a and miR-27b mimics reduced apoA1-mediated cholesterol efflux by 33.08% and 44.61% in THP-1 cells, respectively. miR-27a/b also regulated HDL-mediated cholesterol efflux in THP-1 macrophages and affected the expression of apoA1 in HepG2 cells. However, miR-27a/b had no effect on total cellular cholesterol accumulation, but regulated the levels of cellular free cholesterol and cholesterol ester. We further found that miR-27a/b regulated the expression of LPL and CD36, and then affected the ability of THP-1 macrophages to uptake Dil-oxLDL. Finally, we identified that miR-27a/b regulated cholesterol ester formation by targeting ACAT1 in THP-1 macrophages. CONCLUSION: These findings indicate that miR-27a/b affects the efflux, influx, esterification and hydrolysis of cellular cholesterol by regulating the expression of ABCA1, apoA1, LPL, CD36 and ACAT1.


Assuntos
Colesterol/metabolismo , Macrófagos/metabolismo , MicroRNAs/fisiologia , Células Cultivadas , Esterificação , Humanos , Hidrólise
5.
PLoS One ; 8(9): e74782, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086374

RESUMO

ATP-binding cassette transporter A1 (ABCA1) is critical in exporting cholesterol from macrophages and plays a protective role in the development of atherosclerosis. The purpose of this study was to investigate the effects of betulinic acid (BA), a pentacyclic triterpenoid, on ABCA1 expression and cholesterol efflux, and to further determine the underlying mechanism. BA promoted ABCA1 expression and cholesterol efflux, decreased cellular cholesterol and cholesterol ester content in LPS-treated macrophages. Furthermore, we found that BA promoted ABCA1 expression via down-regulation of miR-33s. The inhibition of LPS-induced NF-κB activation further decreased miR-33s expression and enhanced ABCA1 expression and cholesterol efflux when compared with BA only treatment. In addition, BA suppressed IκB phosphorylation, p65 phosphorylation and nuclear translocation, and the transcription of NF-κB-dependent related gene. Moreover, BA reduced atherosclerotic lesion size, miR-33s levels and NF-κB activation, and promoted ABCA1 expression in apoE(-/-) mice. Taken together, these results reveal a novel mechanism for the BA-mediated ABCA1 expression, which may provide new insights for developing strategies for modulating vascular inflammation and atherosclerosis.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/antagonistas & inibidores , Colesterol/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , NF-kappa B/metabolismo , Triterpenos/antagonistas & inibidores , Triterpenos/farmacologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/sangue , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipídeos/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , MicroRNAs/metabolismo , Modelos Biológicos , Triterpenos Pentacíclicos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ácido Betulínico
6.
Circ J ; 77(9): 2399-408, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23739547

RESUMO

BACKGROUND: Tert-butylhydroquinone (tBHQ), a synthetic phenolic antioxidant, is commonly used as a food preservative because of its potent antilipid peroxidation activity. Several lines of evidence have demonstrated that dietary supplementation with antioxidants has an antiatherogenic function through reducing cholesterol uptake or promoting reverse cholesterol transport. In this study, we investigated whether tBHQ affects expression of ATP-binding cassette transporter A1 (ABCA1) and the potential subsequent effect on cellular cholesterol homeostasis. METHODS AND RESULTS: tBHQ increased ABCA1 protein levels and markedly enhanced cholesterol efflux from THP-1 macrophage-derived foam cells. Furthermore, tBHQ reduced calpain-mediated ABCA1 proteolysis via activation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Inhibition of HO-1 with a pharmacological inhibitor or siRNA and knockdown of Nrf2 suppressed the stimulatory effects of tBHQ on ABCA1 expression and calpain activity. CONCLUSIONS: Nrf2/HO-1 signaling is required for the regulation by tBHQ of ABCA1 expression and cholesterol efflux in macrophage-derived foam cells and an antiatherogenic role of tBHQ is suggested.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Antioxidantes/farmacologia , Células Espumosas/metabolismo , Heme Oxigenase-1/metabolismo , Hidroquinonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Calpaína , Linhagem Celular Tumoral , Células Espumosas/patologia , Humanos
7.
DNA Cell Biol ; 32(7): 348-58, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23705956

RESUMO

AIM: Several lines of evidence have shown that posttranscriptional regulations play an important role in the modulation of ATP-binding cassette transporter A1 (ABCA1) expression and function. RESULTS: The clearance of ABCA1 mRNA as well as the trafficking, stability, degradation, and activity of the ABCA1 protein are regulated by diverse posttranscriptional mechanisms. ABCA1 mRNA clearance is induced by several microRNAs that result in translational repression and reduction of ABCA1 protein expression. Intracellular ABCA1 trafficking is enhanced toward the plasma membrane, leading to an elevation of cell-surface localization, where the majority of the cholesterol efflux activity occurs. The ABCA1 protein turnover is rapid via calpain-mediated degradation and ubiquitin-mediated degradation. Various modulators retard ABCA1 protein clearance, which raises ABCA1 protein levels. The activity of ABCA1 can also be altered by a few molecules that do not affect ABCA1 protein expression. CONCLUSION: In this review, we summarize the advances in the knowledge of ABCA1 posttranscriptional regulation, which is warranted to better understand the role of ABCA1 in reverse cholesterol transport, lipid metabolism, and atherosclerosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/genética , Metabolismo dos Lipídeos/genética , Processamento Pós-Transcricional do RNA/genética , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteínas/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos
8.
Biochimie ; 95(8): 1650-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23707538

RESUMO

Piromelatine, a novel investigational multimodal sleep medicine, is developed for the treatment of patients with primary and co-morbid insomnia. Piromelatine has been shown to inhibit weight gain and improve insulin sensitivity in high-fat/high-sucrose-fed (HFHS) rats. Considering that piromelatine has also been implicated in lowering of triglyceride levels in HFHS rats, this work elucidated whether this effect involves in the regulation of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) in triglyceride (TG) metabolism. In this study, we investigated the effects of piromelatine and MT2 receptors inhibition on TG content, insulin-stimulated glucose uptake, and the expressions of ATGL and HSL in 3T3-L1 adipocytes preincubated in high glucose and high insulin (HGI) conditions. Our results showed that culturing 3T3-L1 adipocytes under HGI conditions increased triglyceride accumulation with concomitant decrease of ATGL and HSL expression, inducing insulin resistance in 3T3-L1 adipocytes. We also found that triglyceride accumulation was significantly inhibited and the levels of ATGL/HSL increased after melatonin or piromelatine treatment. The effects of melatonin/piromelatine (10 nM) were counteracted by pretreatment with the relatively selective MT2 receptor antagonist luzindole (100 nM). In this study, our data demonstrate that piromelatine reverses high glucose and high insulin-induced triglyceride accumulation in 3T3-L1 adipocytes, possibly through up-regulating of ATGL and HSL expression via a melatonin-dependent manner.


Assuntos
Células 3T3-L1/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Indóis/farmacologia , Resistência à Insulina , Lipase/metabolismo , Piranos/farmacologia , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo , Animais , Western Blotting , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Camundongos , Ratos , Transdução de Sinais/efeitos dos fármacos
9.
Atherosclerosis ; 227(2): 201-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23261171

RESUMO

MicroRNAs are a group of endogenous, small non-coding RNA molecules that can induce translation repression of target genes within metazoan cells by specific base pairing with the mRNA of target genes. Recently, microRNA-33 has been discovered as a key regulator in the initiation and progression of atherosclerosis. This review highlights the impact of microRNA-33-mediated regulation in the major cardiometabolic risk factors of atherosclerosis including lipid metabolism (HDL biogenesis and cholesterol homeostasis, fatty acid, phospholipid and triglyceride, bile acids metabolism), inflammatory response, insulin signaling and glucose/energy homeostasis, cell cycle progression and proliferation, and myeloid cell differentiation. Understanding the etiology and pathophysiology of microRNA-33 in atherosclerosis may provide basic knowledge for the development of novel therapeutic targets for ameliorating atherosclerosis and cardiovascular disease.


Assuntos
Aterosclerose/genética , Aterosclerose/fisiopatologia , MicroRNAs/metabolismo , Animais , Aterosclerose/etiologia , Ácidos e Sais Biliares/metabolismo , Sistema Cardiovascular , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Ácidos Graxos/metabolismo , Homeostase , Humanos , Inflamação , Insulina/metabolismo , Lipídeos , Fatores de Risco
10.
Biochimie ; 94(12): 2749-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22963823

RESUMO

LPL (lipoprotein lipase) is a rate-limiting enzyme involved in the hydrolysis of triglycerides. Previous studies have shown that microRNA (miR)-467b regulates hepatic LPL expression and plays a role in the progression of steatosis or abnormal lipid retention in obese mice. Macrophage-derived LPL has been shown to promote atherosclerosis. However, if miR-476b influences macrophage LPL expression and the subsequent effects are unknown. Here, we utilized oxLDL-treatment RAW 264.7 macrophages that were transfected with miR-467b mimics or inhibitors to investigate the potential roles of macrophage miR-476b. We found that miR-467b significantly decreased lipid accumulation and IL-6, IL-1ß, TNF-α and MCP-1 secretions. Furthermore, our studies suggested an additional explanation for the regulatory mechanism of miR-467b on its functional target, LPL in RAW 264.7 macrophages. Thus, our findings indicate that miR-467b may regulate lipid accumulation and proinflammatory cytokine secretion in oxLDL-stimulated RAW 264.7 macrophages by targeting the LPL gene.


Assuntos
Citocinas/metabolismo , Lipídeos/análise , Lipase Lipoproteica/genética , Macrófagos/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Quimiocina CCL2/metabolismo , Cromatografia Líquida de Alta Pressão , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipase Lipoproteica/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , MicroRNAs/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fator de Necrose Tumoral alfa/metabolismo
11.
J Atheroscler Thromb ; 19(9): 823-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22786446

RESUMO

AIM: Apolipoprotein A-I (apoA-I), the major component of high-density lipoprotein (HDL), has been recently found to suppress inflammation. This study was to investigate the effects and potential mechanisms of apoA-I on the CD40/CD40 ligand (CD40L) proinflammatory signaling pathway. METHODS: Human THP-1 macrophage-derived foam cells were treated with sCD40L alone or in the presence of apoA-I. Secretion of proinflammatory cytokines was performed by enzyme-linked immunosorbent assay(ELISA). The proteins and mRNA expression were examined by western-blot and real-time PCR analysis, respectly. Cholesterol efflux was assessed by liquid scintillation counting. Cholesterol depletion of macrophages was performed with methylated ß-cyclodextrin. RESULTS: ApoA-I inhibits the inflammatory response stimulated by soluble CD40L (sCD40L) in macrophages. In addition, apoA-I inhibited the sCD40L-stimulated activation of nuclear factor-kB (NF-kB). The apoA-I-induced NF-kB deactivation was related to the decreased recruitment of tumor necrosis factor receptor-associated factor 6 (TRAF-6), a crucial adapter protein for CD40 in macrophages, to lipid rafts after being treated by sCD40L. When interfering the expression of ATP-binding cassette transporter A1 (ABCA1), a major cholesterol transporter for apoA-I in macrophages, it could significantly diminish the effect of apoA-I on the sCD40L-stimulated inflammatory response. CONCLUSION: ApoA-I suppresses CD40 proinflammatory signaling in macrophages by preventing TRAF-6 translocation to lipid rafts through ABCA1-dependent regulation of free cholesterol (FC) efflux, which may present a novel mechanism of apoA-I-mediated inflammation inhibition in macrophages.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Antígenos CD40/metabolismo , Células Espumosas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Microdomínios da Membrana/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Apolipoproteína A-I/genética , Western Blotting , Antígenos CD40/genética , Ligante de CD40/genética , Ligante de CD40/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Macrófagos/citologia , NF-kappa B/genética , NF-kappa B/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo
12.
Atherosclerosis ; 222(2): 344-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22503545

RESUMO

Pregnancy-associated plasma protein-A (PAPP-A) has been involved in the atherosclerotic process through regulation of local expression of IGF-1 that mediates the activation of the phosphatidylinositol-3 (PI3-K) and Akt kinase (Akt) signaling cascades which lead to constitutive nitric oxide formation, with its attending vasodilator, antiplatelet and insulin-sensitizing actions. In addition, IGF-1 may decreased cholesterol efflux through reductions of expression in ABCA1 and SR-B1 by the PI3-K/Akt signaling pathway. In the current study, we examined whether PAPP-A was involved in LXRα regulation and in expression of ABCA1, ABCG1 or SR-B1 through the IGF-I-mediated signaling pathway (IGF/PI3-K/Akt). Results showed that PAPP-A significantly decreased expression of ABCA1, ABCG1 and SR-BI at both transcriptional and translational levels in a dose-dependent and time-dependent manner. Cellular cholesterol content was increased while cholesterol efflux was decreased by PAPP-A treatment. Moreover, LXRα which can regulate the expression of ABCA1, ABCG1 and SR-B1, was also down-regulated by PAPP-A treatment. LXRα-specific activation by LXRα agonist almost rescued the down-regulation of ABCA1, ABCG1 and SR-B1 expression by PAPP-A. In addition, PAPP-A can induce the IGF-1/PI3-K/Akt pathway in macrophages. Furthermore, our results indicate that the decreased levels observed in LXRα, ABCA1, ABCG1 and SR-B1 mRNA and protein levels upon treating cells with PAPP-A were strongly impaired with the PI3-K inhibitors or IGF-1R siRNA while the MAPK cascade inhibitor did not execute this effect, indicating that the process of ABCA1, ABCG1 and SR-BI degradation by PAPP-A involves the IGF-1/PI3-K/Akt pathway. In conclusion, PAPP-A may first down-regulate expression of LXRα through the IGF-1/PI3-K/Akt signaling pathway and then decrease expression of ABCA1, ABCG1, SR-B1 and cholesterol efflux in THP-1 macrophage-derived foam cells. Therefore, our study provided one of the mechanisms for understanding the critical effect of PAPP-A in pathogenesis of atherosclerosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose/metabolismo , Células Espumosas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptores Nucleares Órfãos/metabolismo , Proteína Plasmática A Associada à Gravidez/metabolismo , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Aterosclerose/etiologia , Aterosclerose/genética , Linhagem Celular , Colesterol/metabolismo , Regulação para Baixo , Células Espumosas/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Receptores X do Fígado , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores Depuradores Classe B/genética , Fatores de Tempo , Transcrição Gênica , Transfecção
13.
Circ J ; 76(7): 1780-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22498566

RESUMO

BACKGROUND: Interleukin (IL)-18 and IL-12 synergize for the production of interferon (IFN)-γ, which can downregulate ATP-binding cassette transporter A1 (ABCA1) expression. The aim of the present study was to investigate the effect of IL-18 and/or IL-12 on ABCA1 expression. METHODS AND RESULTS: IL-18 combined with IL-12 decreased ABCA1 expression and cellular cholesterol efflux in THP-1 macrophage-derived foam cells, whereas IL-18 or IL-12 alone had no effect. IL-12 increased IL-18 receptor (IL-18R) expression, which was suppressed by small interfering RNA (siRNA) for signal transducer and activator of transcription 3. IL-18R but not IL-12 receptor siRNA completely reversed the effects of IL-18 and IL-12 on ABCA1 expression and cellular cholesterol efflux. Treatment with IL-18 plus IL-12 markedly augmented nuclear translocation of nuclear factor (NF)-κB but had no effect on expression and activity of liver X receptor α. IL-18 and IL-12 also significantly increased zinc finger protein 202 (ZNF202) levels and IFN-γ secretion. Furthermore, siRNA for ZNF202 or IFN-γ significantly impaired IL-18/IL-12-induced suppression of ABCA1, whereas NF-κB siRNA treatment blocked IL-18/IL-12' action on ZNF202 levels, IFN-γ secretion, and ABCA1 expression. CONCLUSIONS: IL-18 and IL-12 together can decrease ABCA1 expression and cellular cholesterol efflux in THP-1 macrophage-derived foam cells through the IL-18R/NF-κB signaling pathway.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Espumosas/metabolismo , Interleucina-12/metabolismo , Interleucina-18/metabolismo , NF-kappa B/metabolismo , Receptores de Interleucina-18/metabolismo , Transdução de Sinais , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Linhagem Celular , Colesterol/metabolismo , Regulação para Baixo , Células Espumosas/imunologia , Humanos , Interferon gama/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de Interleucina-12/metabolismo , Receptores de Interleucina-18/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo , Transfecção
14.
Atherosclerosis ; 222(2): 314-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22307089

RESUMO

Atherosclerosis (As) is now widely appreciated to represent a chronic inflammatory reaction of the vascular wall in response to dyslipidemia and endothelial distress involving the inflammatory recruitment of leukocytes and the activation of resident vascular cells. MicroRNAs (miRNAs) are a group of endogenous, small (~22 nucleotides in length) non-coding RNA molecules, which function specifically by base pairing with mRNA of genes, thereby induce translation repressions of the genes within metazoan cells. Recently, the function of miR-27, one of the miRNAs, in the initiation and progression of atherosclerosis has been identified. In vivo and in vitro studies suggest that miR-27 may serve as a diagnostic and prognostic marker for atherosclerosis. More recently, studies have identified important roles for miR-27 in angiogenesis, adipogenesis, inflammation, lipid metabolism, oxidative stress, insulin resistance and type 2 diabetes, etc. In this review, we focus on the role of miR-27 in the development of vulnerable atherosclerotic plaques, potential as a disease biomarker and novel therapeutic target in atherosclerosis.


Assuntos
Aterosclerose/genética , Vasos Sanguíneos/metabolismo , Inflamação/genética , MicroRNAs/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Aterosclerose/terapia , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Metabolismo dos Lipídeos , Receptores Acoplados a Proteínas G/metabolismo
15.
Sheng Li Ke Xue Jin Zhan ; 43(5): 345-50, 2012 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-23316606

RESUMO

Lipoprotein lipase (LPL) which is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL) play an important role in reducing TG deposition in vivo. Recent advances indicate that LPL gene structure, synthesis, secretion and degradation had complexity, and it is regulated by many transcription factors, miRNA, interactive proteins and hormonal. Its role in atherosclerosis in the current studies is still controversial. So we focus the LPL on the structure, synthesis and degradation, function, regulation and contribution to atherosclerosis to clarify its role in cardiovascular disease (CVD).


Assuntos
Aterosclerose/fisiopatologia , Lipase Lipoproteica/genética , Lipase Lipoproteica/fisiologia , Triglicerídeos/metabolismo , Animais , Humanos , Lipase Lipoproteica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA