Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 345: 140444, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839745

RESUMO

Due to its large specific surface area and great hydrophobicity, microplastics can adsorb polycyclic aromatic hydrocarbons (PAHs), affecting the bioavailability and the toxicity of PAHs to plants. This study aimed to evaluate the effects of D550 and D250 (with diameters of 550 µm and 250 µm) microplastics on phenanthrene (PHE) removal from soil and PHE accumulation in maize (Zea mays L.). Moreover, the effects of microplastics on rhizosphere microbial community of maize grown in PHE-contaminated soil would also be determined. The results showed that D550 and D250 microplastics decreased the removal of PHE from soil by 6.5% and 2.7% and significantly reduced the accumulation of PHE in maize leaves by 64.9% and 88.5%. Interestingly, D550 microplastics promoted the growth of maize and enhanced the activities of soil protease and alkaline phosphatase, while D250 microplastics significantly inhibited the growth of maize and decreased the activities of soil invertase, alkaline phosphatase and catalase, in comparison with PHE treatment. In addition, microplastics changed the rhizosphere soil microbial community and reduced the relative abundance of PAHs degrading bacteria (Pseudomonas, Massilia, Proteobacteria), which might further inhibit the removal of PHE from soil. This study provided a new perspective for evaluating the role of microplastics on the bioavailability of PHE to plants and revealing the combined toxicity of microplastics and PHE to soil microcosm and plant growth.


Assuntos
Microbiota , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Zea mays , Microplásticos , Plásticos , Rizosfera , Fosfatase Alcalina , Disponibilidade Biológica , Biodegradação Ambiental , Fenantrenos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
2.
Sci Total Environ ; 905: 167305, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742959

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial environments and laccase was considered as an effective enzyme in PAHs bioremediation. However, laccase-assisted phytoremediation of PAHs-contaminated soil has not been reported. Moreover, the overuse of plastic films in agriculture greatly increased the risk of co-existence of PAHs and microplastics in soil. Microplastics can adsorb hydrophobic organics, thus altering the bioavailability of PAHs and ultimately affecting the removal of PAHs from soil. Therefore, this study aimed to evaluate the efficiency of laccase-assisted maize (Zea mays L.) in the remediation of phenanthrene (PHE)-contaminated soil and investigate the effect of microplastics on this remediation process. The results showed that the combined application of laccase and maize achieved a removal efficiency of 83.47 % for soil PHE, and laccase significantly reduced the accumulation of PHE in maize. However, microplastics significantly inhibited the removal of soil PHE (10.88 %) and reduced the translocation factor of PHE in maize (87.72 %), in comparison with PHE + L treatment. Moreover, microplastics reduced the laccase activity and the relative abundance of some PAHs-degrading bacteria in soil. This study provided an idea for evaluating the feasibility of the laccase-assisted plants in the remediation of PAHs-contaminated soil, paving the way for reducing the risk of secondary pollution in the process of phytoremediation.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Lacase , Microplásticos , Plásticos , Poluentes do Solo/análise , Fenantrenos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Microbiologia do Solo
3.
Chemosphere ; 316: 137807, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634717

RESUMO

The widespread occurrence of bisphenol A (BPA), a typical endocrine-disrupting compound, poses potential threat to ecosystem and public health. Carotenoids are essential natural pigments, playing important roles in photosynthesis and antioxidant defense of plants. This study aimed to verify the value of carotenoids in enhancing plant tolerance to BPA stress and improving phytoremediation efficiency of tobacco (Nicotiana tabacum L.), through exogenous application of ß-carotene (a typical carotenoid) and endogenous upregulation of carotenoids by overexpression of ß-carotene hydroxylase (chyb) gene in tobacco. The results demonstrated that exogenous applied ß-carotene alleviated the toxic effects of BPA exposure (100 mg kg-1) on wild-type (WT) tobacco plants after being cultivated for 40 d, reflecting by the increase of biomass (201.2%), chlorophyll content (27.5%) and the decrease of malondialdehyde (MDA) content (70.7%). Similar with the results of exogenous application of ß-carotene, chyb gene overexpressing tobacco showed less phytotoxicity exposed to BPA, through enhancing photosynthetic efficiency (42.1%) and reducing reactive oxygen species (ROS) production (18%). Notably, about 94.8% BPA in contaminated soil was removed under the cultivation of transgenic tobacco for 40 d, however, only 82.7% was removed in that of WT tobacco. Moreover, transgenic tobacco is beneficial for the growth of plant roots, thus upregulating the abundance of bacteria contributing to BPA degradation or soil nutrient cycling (e.g., Proteobacteria, Acidobacteria, Actinobacteria, Sphingomonas and MND1), which might further help to enhance plant growth and improve BPA removal efficiency in soil. This study extended our understanding of the possible mechanisms of carotenoids-involved alleviation of BPA stress in tobacco, providing a novel strategy to improve phytoremediation efficiency of plants in BPA contaminated soil.


Assuntos
Carotenoides , Poluentes do Solo , Carotenoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , beta Caroteno , Biodegradação Ambiental , Ecossistema , Fotossíntese/genética , Solo , Poluentes do Solo/metabolismo
4.
Environ Pollut ; 314: 120303, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181940

RESUMO

The coexistence of di (2-ethylhexyl) phthalate (DEHP), Cd, and Zn poses a serious challenge to soil ecosystems. This study aimed to evaluate the phytoremediation potential of rice assisted with a plant growth promoting rhizobacteria (PGPR) consortium for the remediation of DEHP, Cd, and Zn co-contaminated soil. The consortium consisted of four bacterial strains, all of which exhibited Cd-Zn resistance and DEHP degradability. The results showed that the rice assisted by the bacterial consortium dissipated 86.1% DEHP while removing 76.0% Cd2+ and 92.2% Zn2+ from soil within 30 d. The presence of the PGPR consortium promoted plant growth and improved soil enzymatic activity, which may have helped enhance the removal of DEHP and heavy metals from the soil. Moreover, the application of the consortium modified the bacterial community and increased the relative abundance of bacteria related to DEHP degradation (Sphingomonas, Xanthobacteraceae), heavy metal immobilization (Massilia), and soil nutrient cycling (Nitrospira, Vicinamibacterales), which promoted plant growth and the removal of DEHP and heavy metals from soil. Notably, the DEHP and heavy metal contents in rice decreased substantially during the phytoremediation process. Therefore, the PGPR consortium could be beneficial for enhancing the removal of DEHP and heavy metals from the soil, without inducing the accumulation of these pollutants in rice. In general, this study confirmed that the combined use of rice and the PGPR consortium could remedy DEHP and heavy metal co-contaminated soil economically and ecologically without simultaneously posing risks for rice consumption.


Assuntos
Dietilexilftalato , Metais Pesados , Oryza , Poluentes do Solo , Biodegradação Ambiental , Rizosfera , Solo , Oryza/metabolismo , Cádmio , Poluentes do Solo/análise , Ecossistema , Metais Pesados/metabolismo , Bactérias/metabolismo , Fotossíntese , Homeostase
5.
Chemosphere ; 307(Pt 1): 135783, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35868529

RESUMO

Benzophenone-3 (BP-3) is an emerging environmental pollutant used in personal care products, helping to reduce the risk of ultraviolet radiation to human skin. The BP-3 removal potential from soil by tobacco (Nicotiana tabacum) assisted with Methylophilus sp. FP-6 was explored in our previous study. However, the reduced BP-3 remediation efficiency by FP-6 in soil and the inhibited plant growth by BP-3 limited the application of this phytoremediation strategy. The aim of the present study was to reveal the potential roles of betaine, as the methyl donor of methylotrophic bacteria and plant regulator, in improving the strain FP-6-assisted phytoremediation capacity of BP-3 contaminated soil. The results revealed that strain FP-6 could use betaine as a co-metabolism substrate to enhance the BP-3 degradation activity. About 97.32% BP-3 in soil was effectively removed in the phytoremediation system using tobacco in combination with FP-6 and betaine for 40 d while the concentration of BP-3 in tobacco significantly reduced. Moreover, the biomass and photosynthetic efficiency of plants were remarkably improved through the combined treatment of betaine and strain FP-6. Simultaneously, inoculation of FP-6 in the presence of betaine stimulated the change of local microbial community structure, which might correlate with the production of a series of hydrolases and reductases involved in soil carbon, nitrogen and phosphorus cycling processes. Meantime, some of the dominant bacteria could secrete various multiple enzymes involved in degrading organic pollutants, such as laccase, to accelerate the demethylation and hydroxylation of BP-3. Overall, the results from this study proposed that the co-metabolic role of betaine could be utilized to strengthen microbial-assisted phytoremediation process by increasing the degradation ability of methylotrophic bacteria and enhancing plant tolerance to BP-3. The present results provide novel insights and perspectives for broadening the engineering application scope of microbial-assisted phytoremediation of organic pollutants without sacrificing economic crop safety.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Benzofenonas , Betaína/farmacologia , Biodegradação Ambiental , Carbono/metabolismo , Poluentes Ambientais/metabolismo , Humanos , Hidrolases/metabolismo , Lacase/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Raios Ultravioleta
6.
Environ Sci Pollut Res Int ; 29(56): 84366-84382, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35780263

RESUMO

Bisphenol A (BPA) is an emerging organic pollutant, widely distributed and frequently detected in soil in recent years. BPA toxicity is a problem that needs to be solved in terms of both human health and agricultural production. Up to now, the toxic effect of BPA and its mechanism of action on plants, as well as the possibility of using plants to remediate BPA-contaminated soil, remain to be explored. In this study, six treatment groups were set up to evaluate the effects of different concentrations of BPA on the germination and growth of tobacco (Nicotiana tabacum L.) by medium experiments. Furthermore, the representative indexes of photosynthetic and antioxidant system were determined. Meanwhile, tobacco seedlings were cultivated in soil to further explore the effects of BPA on rhizosphere soil enzyme activity and bacterial community structure with or without 100 mg/kg BPA exposure. The enhancement of BPA removal efficiency from soil by phytoremediation using tobacco plants would also be estimated. Our results showed that high doses of BPA in solid medium remarkably inhibited tobacco seedling growth, and its toxicology effect was positively correlated with BPA concentration, while lower BPA exposure (< 20 mg/L) had little limitation on tobacco growth and induced hormesis effect, which was reflected mainly in the increase of root length. In pot experiments, the reducing of chlorophyll content (36.4%) and net photosynthetic rate (41.2%) meant the inhibition of tobacco photosynthetic process due to high concentration of BPA exposure (100 mg/kg) in soil. The increase of H2O2 and O2- content suggested that BPA could destroy the balance of reactive oxygen species (ROS) in plants. However, tobacco plants still presented a high removal efficiency of BPA at the concentration of 100 mg/kg in soil, which could reach to 80% within 30 days. Furthermore, it was indicated that tobacco cultivation changed the structure of rhizosphere soil bacterial communities and the relative abundance of some valuable strains, including Proteobacteria, Acidobacteria and other strains, which might be participated in the BPA removal process. In addition, the tobacco-soil microbial system had the potential to reverse the negative effects caused by BPA through stimulating microorganism associated with soil nutrient cycling. In summary, tobacco is a competitive plant in phytoremediation of BPA-contaminated soil, though the growth of tobacco could be inhibited at high concentration of BPA. Moreover, tobacco might promote the removal efficiency of BPA by regulating the rhizosphere bacteria communities.


Assuntos
Rizosfera , Poluentes do Solo , Humanos , Biodegradação Ambiental , Nicotiana , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Bactérias , Solo , Microbiologia do Solo , Plantas , Plântula , Poluentes do Solo/farmacologia
7.
Chemosphere ; 302: 134900, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35568210

RESUMO

Cadmium (Cd) and zinc (Zn) in contaminated soil inhibit rice yield and produce toxic effects on human body through rice accumulation. Plant growth promoting rhizobacteria (PGPR) assisted phytoremediation is an effective ecological measure to improve the remediation efficiency of heavy metal contaminated soil. The purpose of this study was to investigate the efficiency of the combination of rice and Cd/Zn-tolerant PGPR strain Bacillus sp. ZC3-2-1 for the remediation of Cd-Zn contaminated soil. Moreover, the effects of inoculations on rhizosphere bacterial communities and ion homeostasis of rice under Cd-Zn exposure will also be explored. The results showed that compared with the treatment without inoculation, ZC3-2-1 decreased the bioavailable Cd and Zn concentrations in soil by 39.3% and 32.0%, respectively, and increase the phytoextraction of Cd2+ and Zn2+ by rice to 48.2% and 8.0%, respectively. This inoculation process significantly increased the rice biomass, resulting that the contents of Cd2+ and Zn2+ per biomass unit of rice didn't change significantly. This fact meant that ZC3-2-1 could improve the phytoremediation efficiency of Cd-Zn contaminated soil by promoting the phytoextraction and immobilization of the metal, while might not affect the crop food safety. Besides, through regulation of the Na+ and Mg2+ concentration in rice, ZC3-2-1 played a positive role in maintaining ion homeostasis which was disrupted by Zn or Cd. Moreover, ZC3-2-1 could modulate the beneficial bacterial communities in rice rhizosphere soil, and then enhanced Cd-Zn immobilization and enzyme activities in soil, leading to the enhancement of rice growth and phytoremediation efficiency. Above all, this study provided novel insights into developing an efficient phytoremediation system and safe production of rice in Cd-Zn contaminated soil with the application of Bacillus sp. ZC3-2-1, as well as advance our understanding of the principles of rhizosphere bacterial community assemble and maintaining ion homeostasis in rice during this phytoremediation process.


Assuntos
Bacillus , Metais Pesados , Oryza , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Humanos , Metais Pesados/análise , Rizosfera , Solo , Poluentes do Solo/análise , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA