Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Neuroscience ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810690

RESUMO

Memory consolidation refers to a process by which labile newly formed memory traces are progressively strengthened into long term memories and become more resistant to interference. Recent work has revealed that spontaneous hippocampal activity during rest, commonly referred to as "offline" activity, plays a critical role in the process of memory consolidation. Hippocampal reactivation occurs during sharp-wave ripples (SWRs), which are events associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Memory consolidation occurs primarily through a coordinated communication between hippocampus and neocortex. Cortical slow oscillations drive the repeated reactivation of hippocampal memory representations together with SWRs and thalamo-cortical spindles, inducing long-lasting cellular and network modifications responsible for memory stabilization.In this review, we aim to comprehensively cover the field of "reactivation and memory consolidation" research by detailing the physiological mechanisms of neuronal reactivation and firing patterns during SWRs and providing a discussion of more recent key findings. Several mechanistic explanations of neuropsychiatric diseases propose that impaired neural replay may underlie some of the symptoms of the disorders. Abnormalities in neuronal reactivation are common phenomenon and cause pathology impairment in several diseases, such as Alzheimer's disease (AD), temporal lobe epilepsy (TLE), and schizophrenia. However, the specific physiological mechanisms and pathological changes of reactivation in each disease are different. Recent work has also enlightened some of the underlying pathological mechanisms of neuronal reactivation in these diseases. In this review, we further describe how SWRs, ripples, and slow oscillations are affected in Alzheimer's disease, epilepsy, and schizophrenia. We then compare the differences of neuronal reactivation and discuss how different reactivation abnormalities cause pathological changes in these diseases. Aberrant neural reactivation provides insights into disease pathogenesis and may even serve as biomarkers for early disease progression and treatment response.

2.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1848-1864, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812197

RESUMO

Elucidating the quality markers(Q-markers) of traditional Chinese medicines is essential for understanding the mechanisms of action and promoting the rational use of traditional Chinese medicines as well as for developing traditional Chinese medicine-derived drugs. Studies have shown that surface plasmon resonance(SPR) is promising in this field. This study proposed a method based on pull-down with SPR chips to predict the Q-markers of Angong Niuhuang pills(AGNHP). Firstly, 71 main chemical components of AGNHP were analyzed by UPLC-Q-TOF-MS, and then network pharmacology was employed to predict the potential targets of AGNHP against stroke. Secondly, the STAT3 protein chip was constructed, and the extract of AGNHP was recovered by pull-down of the SPR system for STAT3 ligand. The potential active ingredients were collected, enriched, and identified as coptisine, palmatine, epiberberine, berberine, worenine, demethyleneberberine, jatrorrhizine, tetrahydrocoptisine, baicalein, and baicalin methyl ester. Next, the affinity constants of the 10 active ingredients were determined as 44.7, 44, 58.1, 51.3, 39.7, 32.1, 49.2, 69.1, 19.7, and 24.9 µmol·L~(-1), respectively. The molecular docking results showed that the 10 compounds could compete for binding with STAT3. This is the first report that SPR combined with UPLC-Q-TOF-MS is reliable and feasible for determining the active ingredients of AGNHP at the molecular level from complex systems. STAT3 could be used as a potential target for the biological quality evaluation of AGNHP.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas , Ressonância de Plasmônio de Superfície , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas/métodos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Controle de Qualidade , Humanos , Espectrometria de Massa com Cromatografia Líquida
3.
Sci Adv ; 10(14): eadn1272, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578992

RESUMO

Direct conversion of hydrocarbons into amines represents an important and atom-economic goal in chemistry for decades. However, intermolecular cross-coupling of terminal alkenes with amines to form branched amines remains extremely challenging. Here, a visible-light and Co-dual catalyzed direct allylic C─H amination of alkenes with free amines to afford branched amines has been developed. Notably, challenging aliphatic amines with strong coordinating effect can be directly used as C─N coupling partner to couple with allylic C─H bond to form advanced amines with molecular complexity. Moreover, the reaction proceeds with exclusive regio- and chemoselectivity at more steric hinder position to deliver primary, secondary, and tertiary aliphatic amines with diverse substitution patterns that are difficult to access otherwise.

5.
Front Bioeng Biotechnol ; 12: 1363742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558788

RESUMO

In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38594991

RESUMO

Background Atopic dermatitis (AD) is a common skin condition that occurs due to a combined effect of immune dysregulation, skin barrier dysfunction, changes in the cutaneous microbiome, and genetic factors. Recent data from both clinical trials and real-world studies indicate that dupilumab, a biological agent that inhibits interleukin 4 receptor-α is an effective drug in the treatment of AD, which further suggests the important role of IL-13 and IL-4 in the pathogenesis of AD. Objectives To assess the association between gene polymorphisms of IL-13, IL-13 receptor, IL-4, and IL-4 receptor and susceptibility to AD. Methods The single nucleotide polymorphisms (SNPs) of the above-mentioned genes were detected by single base extension (SNaPshot) assay. The association between these SNPs and AD risk was analysed using SPSS software. Results Two hundred and seventy-one subjects including 130 patients with AD and 141 healthy controls were enrolled. There were statistical differences between AD patients and controls in genotype distribution at rs2265753, rs6646259, and rs2254672 of the IL-13 receptor gene (P all < 0.001). Subjects with CG at rs2265753, AG at rs6646259 and TG at rs2254672 had increased risks for AD (P all < 0.001), and subjects with GG at rs2265753, rs6646259, and rs2254672 had reduced risks for AD (P all < 0.001). Limitation This was a single-centre and single-race study, with a relatively small sample size. Conclusions Findings from this study show that rs2265753, rs6646259 and rs2254672 of the IL-13 receptor gene are associated with susceptibility to AD.

7.
Toxicol Appl Pharmacol ; 486: 116918, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570042

RESUMO

Fentanyl, a critical component of opioid analgesics, poses a severe threat to public health, exacerbating the drug problem due to its potential fatality. Herein, we present two novel haptens designed with different attachment sites conjugated to keyhole limpet hemocyanin (KLH), aiming to develop an efficacious vaccine against fentanyl. KLH-Fent-1 demonstrated superior performance over KLH-Fent-2 in antibody titer, blood-brain distribution, and antinociceptive tests. Consequently, we immunized mice with KLH-Fent-1 to generate fentanyl-specific monoclonal antibodies (mAbs) using the hybridoma technique to compensate for the defects of active immunization in the treatment of opioid overdose and addiction. The mAb produced by hybridoma 9D5 exhibited the ability to recognize fentanyl and its analogs with a binding affinity of 10-10 M. Subsequently, we developed a human IgG1 chimeric mAb to improve the degree of humanization. Pre-treatment with murine and chimeric mAb significantly reduced the analgesic effect of fentanyl and altered its blood-brain biodistribution in vivo. Furthermore, in a mouse model of fentanyl-induced respiratory depression, the chimeric mAb effectively reversed respiratory depression promptly and maintained a certain level during the week. The development of high-affinity chimeric mAb gives support to combat the challenges of fentanyl misuse and its detrimental consequences. In conclusion, mAb passive immunization represents a viable strategy for addressing fentanyl addiction and overdose.


Assuntos
Analgésicos Opioides , Anticorpos Monoclonais , Fentanila , Hemocianinas , Fentanila/imunologia , Animais , Analgésicos Opioides/farmacologia , Anticorpos Monoclonais/farmacologia , Camundongos , Hemocianinas/imunologia , Humanos , Camundongos Endogâmicos BALB C , Masculino , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/imunologia , Distribuição Tecidual , Feminino , Haptenos/imunologia
8.
ACS Pharmacol Transl Sci ; 7(2): 421-431, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357273

RESUMO

In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1ß, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-ß1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.

9.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5271-5277, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114116

RESUMO

This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão , Ratos , Animais , Células PC12 , Proteínas Proto-Oncogênicas c-akt/genética , Glucose/uso terapêutico , Oxigênio/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico
10.
Cytokine Growth Factor Rev ; 74: 1-13, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821254

RESUMO

The Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3), a member of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) family, plays an important role in the innate immune response against pathogen invasions. NLRP3 inflammasome consisting of NLRP3 protein, the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC), and the effector protein pro-caspase-1, is central to this process. Upon activation, NLRP3 inflammasome initiates the release of inflammatory cytokines and triggers a form of cell death known as pyroptosis. Dysregulation or inappropriate activation of NLRP3 has been implicated in various human diseases, including type 2 diabetes, colitis, depression, and gout. Consequently, understanding the mechanism underlying NLRP3 inflammasome activation is critical for the development of therapeutic drugs. In the pursuit of potential therapeutic agents, peptides present several advantages over small molecules. They offer higher selectivity, increased potency, reduced toxicity, and fewer off-target effects. The advancements in molecular biology have expanded the opportunities for applying peptides in medicine, unlocking their vast medical potential. This review begins by providing a comprehensive summary of recent research progress regarding the mechanisms governing NLRP3 inflammasome activation. Subsequently, we offer an overview of current peptide inhibitors capable of modulating the NLRP3 inflammasome activation pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Apoptose , Nucleotídeos , Interleucina-1beta/metabolismo
11.
Nat Commun ; 14(1): 5339, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660185

RESUMO

Six-membered N-containing heterocycles, such as 2-piperidinone derivatives, with diverse substitution patterns are widespread in natural products, drug molecules and serve as key precursors for piperidines. Thus, the development of stereoselective synthesis of multi-substituted 2-piperidinones are attractive. However, existing methods heavily rely on modification of pre-synthesized backbones which require tedious multi-step procedure and suffer from limited substitution patterns. Herein, an organophotocatalysed [1 + 2 + 3] strategy was developed to enable the one-step access to diverse substituted 2-piperidinones from easily available inorganic ammonium salts, alkenes, and unsaturated carbonyl compounds. This mild protocol exhibits exclusive chemoselectivity over two alkenes, tolerating both terminal and internal alkenes with a wide range of functional groups.

12.
Front Immunol ; 14: 1178662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275856

RESUMO

Gasdermin D (GSDMD)-mediated pyroptosis and downstream inflammation are important self-protection mechanisms against stimuli and infections. Hosts can defend against intracellular bacterial infections by inducing cell pyroptosis, which triggers the clearance of pathogens. However, pyroptosis is a double-edged sword. Numerous studies have revealed the relationship between abnormal GSDMD activation and various inflammatory diseases, including sepsis, coronavirus disease 2019 (COVID-19), neurodegenerative diseases, nonalcoholic steatohepatitis (NASH), inflammatory bowel disease (IBD), and malignant tumors. GSDMD, a key pyroptosis-executing protein, is linked to inflammatory signal transduction, activation of various inflammasomes, and the release of downstream inflammatory cytokines. Thus, inhibiting GSDMD activation is considered an effective strategy for treating related inflammatory diseases. The study of the mechanism of GSDMD activation, the formation of GSDMD membrane pores, and the regulatory strategy of GSDMD-mediated pyroptosis is currently a hot topic. Moreover, studies of the structure of caspase-GSDMD complexes and more in-depth molecular mechanisms provide multiple strategies for the development of GSDMD inhibitors. This review will mainly discuss the structures of GSDMD and GSDMD pores, activation pathways, GSDMD-mediated diseases, and the development of GSDMD inhibitors.


Assuntos
COVID-19 , Piroptose , Humanos , Gasderminas , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
13.
Front Pharmacol ; 14: 1151196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153784

RESUMO

Ischemic stroke (IS) is the second leading cause of death and disability in the world. Pyroptosis, a form of programmed cell death initiated by caspases, participates in the occurrence and development of IS. Because it can increase cell membrane permeability, mediate the release of inflammatory factors, and aggravate inflammation, inhibiting this process can significantly reduce the pathological injury of IS. The nucleotide binding oligomerization domain-like receptor family pyrin domain protein 3 (NLRP3) is a multiprotein complex whose activation is the core link of pyroptosis. In recent years, studies have reported that traditional Chinese medicine (TCM) could regulate pyroptosis mediated by NLRP3 inflammasome through multi-channel and multi-target networks and thus exert the effect against IS. This article reviews 107 papers published in recent years in PubMed, Chinese National Knowledge Infrastructure (CNKI), and WanFang Data in recent years. It has found that the activation factors of NLRP3 inflammasome include ROS, mitochondrial dysfunction, K+, Ca2+, lysosome rupture, and trans-Golgi breakdown. TLR4/NF-κB/NLRP3, ROS/TXNIP/NLRP3, AMPK/Nrf2/NLRP3, DRP1/NLRP3, TAK1/JNK/NLRP3 signaling pathways regulate the initiation and assembly of the NLRP3 inflammasome, subsequently induce pyroptosis, affecting the occurrence and development of IS. TCM can affect the above signaling pathways and regulate the pyroptosis mediated by NLRP3 inflammasome, so as to play a protective role against IS, which provides a new entry point for discussing the pathological mechanism of IS and a theoretical basis for developing TCM treasure house.

15.
Angew Chem Int Ed Engl ; 62(22): e202303795, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36995169

RESUMO

Enantioenriched α-tertiary-α-aminoacid and α-chiral-ß-aminoacid derivatives play an important role in biological science and pharmaceutical chemistry. Thus, the development of methods for their synthesis is highly valuable and yet remains challenging. Herein, an unprecedented catalyst-controlled regiodivergent and enantioselective formal hydroamination of N,N-disubstituted acrylamides with aminating agents has been developed, accessing enantioenriched α-tertiary-α-aminolactam and α-chiral-ß-aminoamide derivatives. Sterically-disfavored and electronically-disfavored enantioselective hydroamination of electron-deficient alkenes have been successfully tuned using different transition metals and chiral ligands. Notably, extremely hindered aliphatic α-tertiary-α-aminolactam derivatives were synthesized by Cu-H catalyzed asymmetric C-N bond forming with tertiary alkyl species. Enantioenriched α-chiral-ß-aminoamide derivatives have been accessed by Ni-H catalyzed anti-Markovnikov-selective formal hydroaminations of alkenes. This set of reactions tolerates a wide range of functional groups to deliver diverse α-tertiary-α-aminolactam and α-chiral-ß-aminoamide derivatives in good yields with high levels of enantioselectivity.

16.
Front Pharmacol ; 13: 987882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210826

RESUMO

LS-102 is a new derivative of astragaloside IV (AGS IV) that has been shown to possess potentially significant cardioprotective effects. However, there are no reports concerning its interaction with human serum albumin (HSA) and toxicology in vertebrates. The present investigation was undertaken to characterize the interaction of AGS IV and LS-102 with HSA using equilibrium dialysis and UHPLC-MS/MS methods, along with computational methods. Notably, the effects of AGS IV and LS-102 were studied in vivo using the zebrafish embryo model. Markers related to embryonic cardiotoxicity and thrombosis were evaluated. We showed that the plasma protein binding rate of AGS IV (94.04%-97.42%) was significantly higher than that of LS-102 (66.90%-69.35%). Through site marker competitive experiments and molecular docking, we found that AGS IV and LS-102 were located at the interface of subdomains IIA and IIIA, but the site I might be the primary binding site. Molecular dynamics revealed that AGS IV showed a higher binding free energy mainly due to the stronger hydrophobic and hydrogen bonding interactions. Moreover, the secondary structure implied no obvious effect on the protein structure and conformation during the binding of LS-102. LS-102 significantly ameliorated the astramizole-induced heart rate slowing, increased SV-BA spacing, and prevented arachidonic acid-induced thrombosis in zebrafish. To our knowledge, we are the first to reveal that LS-102 binds to HSA with reversible and moderate affinity, indicating its easy diffusion from the circulatory system to the target tissue, thereby providing significant insights into its pharmacokinetic and pharmacodynamic properties when spread in the human body. Our results also provide a reference for the rational clinical application of LS-102 in the cardiovascular field.

17.
J Med Chem ; 65(6): 5029-5043, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35253427

RESUMO

1,2,4-Oxadiazole derivatives, a class of Nrf2-ARE activators, exert an extensive therapeutic effect on inflammation, cancer, neurodegeneration, and microbial infection. Among these analogues, DDO-7263 is the most potent Nrf2 activator and used as the core structure for bioactive probes to explore the precise mechanism. In this work, we obtained compound 7, a mimic of DDO-7263, and biotin-labeled and fluorescein-based probes, which exhibited homologous biological activities to DDO-7263, including activating Nrf2 and its downstream target genes, anti-oxidative stress, and anti-inflammatory effects. Affinity chromatography and mass analysis techniques revealed Rpn6 as the potential target protein regulating the Nrf2 signaling pathway. In vitro affinity experiments further confirmed that DDO-7263 upregulated Nrf2 through binding to Rpn6 to block the assembly of 26S proteasome and the subsequent degradation of ubiquitinated Nrf2. These results indicated that Rpn6 is a promising candidate target to activate the Nrf2 pathway for protecting cells and tissues from oxidative, electrophilic, and exogenous microbial stimulation.


Assuntos
Fator 2 Relacionado a NF-E2 , Oxidiazóis , Fator 2 Relacionado a NF-E2/metabolismo , Oxidiazóis/química , Oxidiazóis/farmacologia , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo
18.
Drug Deliv ; 29(1): 664-678, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35209786

RESUMO

Traditional anticancer treatments have several limitations, but cancer is still one of the deadliest diseases. As a result, new anticancer drugs are required for the treatment of cancer. The use of metal nanoparticles (NPs) as alternative chemotherapeutic drugs is on the rise in cancer research. Metal NPs have the potential for use in a wide range of applications. Natural or surface-induced anticancer effects can be found in metals. The focus of this review is on the therapeutic potential of metal-based NPs. The potential of various types of metal NPs for tumor targeting will be discussed for cancer treatment. The in vivo application of metal NPs for solid tumors will be reviewed. Risk factors involved in the clinical application of metal NPs will also be summarized.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Tecnologia
19.
Cancer Biother Radiopharm ; 37(4): 256-275, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33179959

RESUMO

Background: The expression level and clinical significance of integrin subunit beta 4 (ITGB4) in head and neck squamous cell carcinoma (HNSCC) remain unclear. Materials and Methods: Expression of ITGB4 in HNSCC tissues was evaluated by calculating standard mean differences (SMDs) based on gene chips, RNA-seq, and immunohistochemistry data (n = 2330) from multiple sources. Receiver operating characteristic (ROC) curves were used to detect the ability of ITGB4 to distinguish HNSCC from non-HNSCC samples. The relationship between the expression level of ITGB4 and clinical parameters was evaluated by calculating SMDs. Results: Identical results of mRNA and protein levels indicated remarkable up-expression of ITGB4 in HNSCC tissues. Further ROC curves showed that ITGB4 could distinguish HNSCC from non-HNSCC samples. Genetic alteration analysis of ITGB4 in HNSCC indicated that overexpression of ITGB4 in HNSCC was likely not owing to genetic alteration of ITGB4. Moreover, ITGB4 overexpression level may be correlated with clinical T stage. Conclusion: ITGB4 likely plays an essential role in HNSCC occurrence based on our study and its potential diagnostic value is worthy of further exploration in the future.


Assuntos
Neoplasias de Cabeça e Pescoço , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Imuno-Histoquímica , RNA Mensageiro , Curva ROC , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
20.
Bioengineered ; 13(2): 1975-1987, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34898382

RESUMO

Bacterial peritonitis is a severe disease that diagnosis remains challenging for clinicians. Measuring biomarkers might be a rapid diagnostic method. The objective of this study was to analyze and evaluate the dynamic changes in HIF-1α concentration in serum exosomes during bacterial peritonitis. The pre-clinical application value of serum exosomal HIF-1α was evaluated via imipenem and cilastatin sodium (ICS) intervention in the bacterial peritonitis model. The new colorimetric method to quantitate dynamic expression changes of HIF-1α in serum exosomes during bacterial peritonitis was established by our team via using the gold seed-coated with aptamer-functionalized Au @ Au core-shell peroxidase mimic. The typical inflammatory cytokines of bacterial peritonitis were also measured. Following intramuscular administration with ICS, In-Vivo Xtreme imaging system was used to visualize abdominal infection extent. Meanwhile, HIF-1α concentration in rat serum exosomes and pro-inflammatory factors levels in serum were detected. The serum typical inflammatory cytokines levels were elevated in GFP-labeled E.coli induced bacterial peritonitis. The serum exosomal HIF-1α levels clearly increased at 12 h, reached the peak during 24-48 h, and then gradually decreased at 72 h. Following intramuscular administration with ICS, the abdominal infection extent, HIF-1α concentration in serum exosomes, and the serum pro-inflammatory factors levels were reduced at 24 h in GFP-labeled E. coli induced bacterial peritonitis model. The serum exosomal HIF-1α can be used as a biomarker in the early stage of bacterial peritonitis, which might provide the basic research in the pre-clinical for further predicting and monitoring the pathological process of bacterial peritonitis.


Assuntos
Infecções Bacterianas/sangue , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Peritonite/sangue , Animais , Biomarcadores/sangue , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA