RESUMO
OBJECTIVES: This study aims to comprehensively assess how dietary risk factors have influenced the prevalence of Type 2 Diabetes Mellitus (T2DM) in China from 1990 to 2021. The study seeks to provide robust data and scientific evidence essential for formulating effective preventive and control strategies to combat T2DM in China. STUDY DESIGN: This cross-sectional study conducted secondary analyses using data from the Global Burden of Disease 2021 (GBD 2021) to assess the burden of T2DM in China attributable to dietary risks. METHODS: The study analyzed age-adjusted metrics related to T2DM, including death counts, Disability-Adjusted Life Years (DALYs), and Age-Standardized Rates (ASRs), using GBD 2021 data, stratified by age and sex. Additionally, Estimated Annual Percentage Changes (EAPCs) were employed to track trends over time. RESULTS: In 2021, the results show that 21.43 % of T2DM-related deaths and 23.51 % of DALYs were attributable to dietary risk factors, notably a diet low in whole grains and high in red and processed meats. Over the period from 1990 to 2021, there has been an increasing trend in the EAPCs of death rates and DALYs associated with dietary risks in China, suggesting a substantial impact of dietary factors on the burden of T2DM in the country. CONCLUSION: This study highlights the urgent need for targeted public health interventions to promote dietary changes and reduce the burden of T2DM in China.
RESUMO
The intestinal epithelium is an important gatekeeper of the human body by forming a barrier for the luminal content of the intestine. The barrier function is regulated by a complex crosstalk between different cell types, including cells from the enteric nervous system (ENS). ENS is considered to influence gastrointestinal processes and functions, but its direct effect on epithelial barrier function remains to be confirmed. To investigate the effect of nerve cells on the gut barrier function, an in vitro co-culture system was established in which T84 intestinal epithelial cells and SH-SY5Y nerve cells were seeded in ratios of 29:1 and 14:1. When the epithelial barrier was disrupted with the calcium ionophores A23187, we found that nerve cells exert a protective effect on A23187-induced disruption and that this protective effect is nerve cell concentration-dependent. This was demonstrated by rescuing effects on transepithelial electrical resistance (TEER) and upregulation of tight junction (TJ) protein expression. Furthermore, we studied whether similar rescuing effects could be achieved with the human milk oligosaccharides (hMOs) 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL). Our results illustrate that in the presence of nerve cells 2'-FL and 3-FL do not have any additional rescuing effects, but that these hMOs can substitute the rescuing effects of nerve cells in the absence of nerve cells. Meanwhile, 2'-FL and 3-FL show different regulation effects on TJ expression. These findings provide valuable insights into potential therapeutic strategies for maintaining intestinal barrier integrity.
RESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, characterized by high rates of angiogenesis and immune evasion. Paraspeckle genes, involved in gene regulation and RNA metabolism, have recently been linked to tumor progression. This study aims to elucidate the relationship between paraspeckle genes and HCC prognosis, focusing on SFPQ, DDX39B, and UBAP2. METHODS: We analyzed HCC (LIHC) and prostate cancer (PRAD) samples from the TCGA database to explore the correlation between paraspeckle genes and angiogenesis. We conducted unsupervised clustering, risk scoring, and survival analysis to identify distinct patient groups and their clinical outcomes. Gene expression data were used to perform differential analysis and Gene Ontology (GO) enrichment. RESULTS: Our analysis identified significant correlations between paraspeckle genes and angiogenesis across multiple cancer types. Elevated expression levels of SFPQ, DDX39B, and UBAP2 were associated with poor prognosis in HCC patients, and all of them has statistical significance. Unsupervised clustering of HCC samples based on paraspeckle gene expression revealed two distinct clusters, with high-risk patients exhibiting stronger immune suppression and tumor immune evasion. GO enrichment highlighted critical pathways related to angiogenesis and immune regulation. Additionally, a risk scoring model based on these genes effectively distinguished high-risk and low-risk patient groups, providing valuable prognostic insights. CONCLUSION: This study demonstrates that SFPQ, DDX39B, and UBAP2 are significantly associated with poor prognosis in HCC, likely due to their roles in promoting angiogenesis and immune suppression. These findings highlight the potential of paraspeckle genes as prognostic biomarkers and therapeutic targets, offering new avenues for personalized treatment strategies in HCC. Further research into their functional mechanisms and clinical applicability is crucial for advancing HCC treatment and improving patient outcomes.
RESUMO
The assessment of biodegradable materials, such as bioactive glass, under the existing ISO 10993 standard test methods poses a significant challenge due to potential cell viability impairment caused by the accumulation of degraded products in a static environment. Therefore, innovative methodologies are urgently needed to tailor the unique biodegradation characteristics of these materials, providing more precise and scientific insights into biosafety and efficacy verification. Motivation by its bidirectional regulation of angiogenesis and immunity, zinc (Zn) was incorporated into sol-gel-derived borosilicate bioactive glasses (SBSGs) to fabricate Zn-incorporated borosilicate bioactive glasses (SBSG-Zn) to complement the tissue repair capabilities of bioactive glasses. Both SBSG and SBSG-Zn glasses consist of nanosized particles, slit mesoporous pores, high specific surface areas, and bioreactivity. In vitro comparative analysis, conducted according to ISO 10993 standards, demonstrates that only at suitable dilution ratesâsuch as the 8-fold dilution employed in this studyâdo extracts of SBSG and SBSG-Zn glasses exhibit low cytotoxicity when cultured with human umbilical vein endothelial cells (HUVECs). Notably, SBSG-Zn glasses show optimal promotion of angiogenic gene expression in HUVECs. Furthermore, within an appropriate concentration range of released ions, SBSG-Zn glass extracts not only promote cell survival but also modulate the expression of anti-inflammatory genes while simultaneously inhibiting pro-inflammatory genes concurrently. After being implanted in rat subcutaneous defect models, both SBSG and SBSG-Zn glasses demonstrated the local immunoregulation and angiogenic effects. SBSG-Zn stands out by demonstrating superior modulation of M1/M2 polarization in macrophages as validated by altered secretion of key factors in macrophages and expression of relevant growth factors in HUVECs. These findings underscore the potential for convenient manipulation of localized angiogenic and immunoregulation through the incorporation of zinc into bioactive glass, emphasizing the importance of ensuring the appropriate ion doses are applied for achieving optimal therapeutic efficiency.
Assuntos
Materiais Biocompatíveis , Células Endoteliais da Veia Umbilical Humana , Zinco , Zinco/química , Humanos , Animais , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Vidro/química , Neovascularização Fisiológica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais , Silicatos/química , Silicatos/farmacologia , Ratos Sprague-Dawley , MasculinoRESUMO
Microplastics (MPs) have been widely found in the environment and have exerted non-negligible impacts on the environment and human health. Extensive research has shown that MPs can act as carriers for viruses and interacts with them in various ways. Whether MPs influence the persistence, transmission and infectivity of virus has attracted global concern in the context of increasing MPs contamination. This review paper provides an overview of the current state of knowledge regarding the interactions between MPs and viruses in aquatic environments. Latest progress and research trends in this field are summarized based on literature analysis. Additionally, we discuss the potential risks posed by microplastic-associated viruses to human health and the environmental safety, highlighting that MPs can affect viral transmission and infectivity through various pathways. Finally, we underscores the need for further research to address key knowledge gaps, such as elucidating synergistic effects between MPs and viruses, understanding interactions under real environmental conditions, and exploring the role of biofilms in virus-MPs interactions. This review aims to contribute to a deeper understanding on the transmission of viruses in the context of increasing MPs pollution in water, and promote actions to reduce the potential risks.
RESUMO
Eunicellane diterpenoids, containing a typical 6,10-bicycle, are bioactive compounds widely present in marine corals, but rarely found in bacteria and plants. The intrinsic macrocycle exhibits innate structural flexibility resulting in dynamic conformational changes. However, the mechanisms controlling flexibility remain unknown. The discovery of a terpene synthase, MicA, that is responsible for the biosynthesis of a nearly non-flexible eunicellane skeleton, enable us to propose a feasible theory about the flexibility in eunicellane structures. Parallel studies of all eunicellane synthases in nature discovered to date, including 2Z-geranylgeranyl diphosphate incubations and density functional theory-based Boltzmann population computations, reveale that a trans-fused bicycle with a 2Z-configuration alkene restricts conformational flexibility resulting in a nearly non-flexible eunicellane skeleton. The catalytic route and the enzymatic mechanism of MicA are also elucidated by labeling experiments, density functional theory calculations, structural analysis of the artificial intelligence-based MicA model, and mutational studies.
Assuntos
Alquil e Aril Transferases , Diterpenos , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/química , Diterpenos/metabolismo , Diterpenos/química , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/química , Modelos MolecularesRESUMO
The coronavirus disease-2019 pandemic resulted in a major increase in depression and anxiety disorders worldwide, which increased the demand for mental health services. However, clinical interventions for treating mental disorders are currently insufficient to meet this growing demand. There is an urgent need to conduct scientific and standardized clinical research that are consistent with the features of mental disorders in order to deliver more effective and safer therapies in the clinic. Our study aimed to expose the challenges, complexities of study design, ethical issues, sample selection, and efficacy evaluation in clinical research for mental disorders. The reliance on subjective symptom presentation and rating scales for diagnosing mental diseases was discovered, emphasizing the lack of clear biological standards, which hampers the construction of rigorous research criteria. We underlined the possibility of psychotherapy in efficacy evaluation alongside medication treatment, proposing for a multidisciplinary approach comprising psychiatrists, neuroscientists, and statisticians. To comprehend mental disorders progression, we recommend the development of artificial intelligence integrated evaluation tools, the use of precise biomarkers, and the strengthening of longitudinal designs. In addition, we advocate for international collaboration to diversity samples and increase the dependability of findings, with the goal of improving clinical research quality in mental disorders through sample representativeness, accurate medical history gathering, and adherence to ethical principles.
RESUMO
Gut epithelial barrier disruption is commonly observed in Western diseases like diabetes and inflammatory bowel disease (IBD). Enhanced epithelial permeability triggers inflammatory responses and gut microbiota dysbiosis. Reduced bacterial diversity in IBD affects gut microbiota metabolism, altering microbial products such as secondary bile acids (BAs), which potentially play a role in gut barrier regulation and immunity. Dietary fibers such as pectin may substitute effects of these BAs. The study examines transepithelial electrical resistance of gut epithelial T84 cells and the gene expression of tight junctions after exposure to (un)sulfated secondary BAs. This is compared to the impact of the dietary fiber pectin with different degrees of methylation (DM) and blockiness (DB), with disruption induced by calcium ionophore A23187 under both normal and hyperglycemic conditions. Unsulfated lithocholic acid (LCA) and deoxycholic acid (DCA) show a stronger rescuing effect, particularly evident under 20 mM glucose levels. DM19 with high DB (HB) and DM43HB pectin exhibit rescuing effects under both glucose conditions. Notably, DM19HB and DM43HB display higher rescue effects under 20 mM glucose compared to 5 mM glucose. The study demonstrates that specific pectins such as DM19HB and DM43HB may serve as alternatives for preventing barrier disruption in the case of disturbed DCA metabolism.
Assuntos
Ácidos e Sais Biliares , Hiperglicemia , Pectinas , Pectinas/farmacologia , Humanos , Ácidos e Sais Biliares/metabolismo , Ácido Desoxicólico/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Linhagem Celular , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ácido Litocólico/farmacologia , Fibras na Dieta/farmacologia , Glucose/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Permeabilidade/efeitos dos fármacosRESUMO
In this study, an in vitro co-culture model using an electric cell-substrate impedance sensing system (ECIS) for testing the impact of real-time fermentation of non-digestible carbohydrates (NDCs) by the intestinal microbiota on gut barrier function was established. We applied Lactobacillus plantarum WCFS1 as a model intestinal bacterium and alginate-pectin as immobilization polymers as well as a source of NDCs to determine the impact of pectin fermentation on the barrier function of T84 gut epithelial cells. In the first design, L. plantarum WCFS1 was encapsulated in an alginate capsule followed by embedding in an agar layer to mimic a firm mucus layer that might be present in the colon. In this experimental design, the presence of the agar layer interfered with the transepithelial electrical resistance (TEER) measurement of T84 cells. Subsequently, we removed the agar layer and used encapsulated bacteria in an alginate gel and found that the TEER measurement was adequate. The encapsulation of the L. plantarum WCFS1 does avoid direct contact with cells. Also, the encapsulation system allows higher amounts of packing densities of L. plantarum WCFS1 in a limited space which can limit the oxygen concentration within the capsule and therefore create anaerobic conditions. To test this design, T84 cells were co-incubated with L. plantarum alginate-capsules supplemented with graded loads of fermentable pectin (0, 4, and 8 mg/ml per capsule) to investigate the effect of pectin fermentation on gut barrier function. We observed that as the pectin content in the L. plantarum capsules increased, pectin showed a gradually stronger protective effect on the TEER of the gut epithelium. This could partly be explained by enhanced SCFA production as both lactate and acetate were enhanced in L. plantarum containing alginate capsules with 8 mg/ml pectin. Overall, this newly designed in vitro co-culture model allows for studying the impact of bacteria-derived fermentation products but also for studying the direct effects of NDCs on gut barrier function in a relatively high-throughput way.
RESUMO
Dissolved organic matter (DOM) is important in determining the drinking water treatment and the supplied water quality. However, a comprehensive DOM study for the whole water supply system is lacking and the potential effects of secondary water supply are largely unknown. This was studied using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). Four fluorescent components were identified, including humic-like C1-C2, tryptophan-like C3, and tyrosine-like C4. In the drinking water treatment plants, the advanced treatment using ozone and biological activated carbon (O3-BAC) was more effective in removing DOC than the conventional process, with the removals of C1 and C3 improved by 17.7%-25.1% and 19.2%-27.0%. The absorption coefficient and C1-C4 correlated significantly with DOC in water treatments, suggesting that absorption and fluorescence could effectively track the changes in bulk DOM. DOM generally remained stable in each drinking water distribution system, suggesting the importance of the treated water quality in determining that of the corresponding network. The optical indices changed notably between distribution networks of different treatment plants, which enabled the identification of changing water sources. A comparison of DOM in the direct and secondary water supplies suggested limited impacts of secondary water supply, although the changes in organic carbon and absorption indices were detected in some locations. These results have implications for better understanding the changes of DOM in the whole water supply system to help ensure the supplied water quality.
Assuntos
Abastecimento de Água , Qualidade da Água , Purificação da Água/métodos , Substâncias Húmicas/análise , Água Potável/química , Água Potável/análise , Carbono/análiseRESUMO
Importance: Bipolar mania is a common disabling illness. Electroconvulsive therapy (ECT) is an effective treatment for patients with severe mania, though it is limited by the risk of cognitive adverse effects. Magnetic seizure therapy (MST) as an alternative treatment to ECT for bipolar mania has not yet been reported. Objective: To compare the effectiveness and cognitive adverse effects of MST and ECT in bipolar mania. Design, Setting, and Participants: This randomized clinical trial was conducted at the Shanghai Mental Health Center from July 1, 2017, through April 26, 2021. Forty-eight patients with bipolar mania were recruited and randomly allocated to receive MST or ECT. The data analysis was performed from June 5, 2021, through August 30, 2023. Interventions: Patients completed 2 or 3 sessions of MST or ECT per week for a total of 8 to 10 sessions. The MST was delivered at 100% device output with a frequency of 75 Hz over the vertex. Main Outcomes and Measures: The primary outcomes were reduction of total Young Manic Rating Scale (YMRS) score and response rate (more than 50% reduction of the total YMRS score compared with baseline). An intention-to-treat (ITT) analysis and repeated-measures analyses of variance were conducted for the primary outcomes. Results: Twenty patients in the ECT group (mean [SD] age, 31.6 [8.6] years; 12 male [60.0%]) and 22 patients in the MST group (mean [SD] age, 34.8 [9.8] years; 15 male [68.2%]) were included in the ITT analysis. The response rates were 95.0% (95% CI, 85.4%-100%) in the ECT group and 86.4% (95% CI, 72.1%-100%) in the MST group. The YMRS reduction rate (z = -0.82; 95% CI, -0.05 to 0.10; P = .41) and response rate (χ2 = 0.18; 95% CI, -0.13 to 0.31; P = .67) were not significantly different between the groups. The time-by-group interaction was significant for the language domain (F1,24 = 7.17; P = .01), which was well preserved in patients receiving MST but worsened in patients receiving ECT. No serious adverse effects were reported in either group. Conclusions and Relevance: These findings suggest that MST is associated with a high response rate and fewer cognitive impairments in bipolar mania and that it might be an alternative therapy for the treatment of bipolar mania. Trial Registration: ClinicalTrials.gov Identifier: NCT03160664.
Assuntos
Transtorno Bipolar , Eletroconvulsoterapia , Humanos , Masculino , Feminino , Eletroconvulsoterapia/métodos , Eletroconvulsoterapia/efeitos adversos , Transtorno Bipolar/terapia , Transtorno Bipolar/psicologia , Adulto , Resultado do Tratamento , Pessoa de Meia-Idade , Convulsões , ChinaRESUMO
The rapid production of hydrogen peroxide (H2O2) is a hallmark of plants' successful recognition of pathogen infection and plays a crucial role in innate immune signaling. Aquaporins (AQPs) are membrane channels that facilitate the transport of small molecular compounds across cell membranes. In plants, AQPs from the plasma membrane intrinsic protein (PIP) family are utilized for the transport of H2O2, thereby regulating various biological processes. Plants contain two PIP families, PIP1s and PIP2s. However, the specific functions and relationships between these subfamilies in plant growth and immunity remain largely unknown. In this study, we explore the synergistic role of AtPIP1;4 and AtPIP2;4 in regulating plant growth and disease resistance in Arabidopsis. We found that in plant cells treated with H2O2, AtPIP1;4 and AtPIP2;4 act as facilitators of H2O2 across membranes and the translocation of externally applied H2O2 from the apoplast to the cytoplasm. Moreover, AtPIP1;4 and AtPIP2;4 collaborate to transport bacterial pathogens and flg22-induced apoplastic H2O2 into the cytoplasm, leading to increased callose deposition and enhanced defense gene expression to strengthen immunity. These findings suggest that AtPIP1;4 and AtPIP2;4 cooperatively mediate H2O2 transport to regulate plant growth and immunity.
RESUMO
Arsenic (As)-contaminated soil poses great health risk to human mostly through inadvertent oral exposure. We investigated CaAl-layered double hydroxide (CaAl-LDH), a promising immobilising agent, for the remediation of As-contaminated Chinese soils. The effects on specific soil properties and As fractionation were analyzed, and changes in the health risk of soil As were accurately assessed by means of advanced in vivo mice model and in vitro PBET-SHIME model. Results showed that the application of CaAl-LDH significantly increased soil pH and concentration of Fe and Al oxides, and effectively converted active As fractions into the most stable residual fraction, guaranteeing long-term remediation stability. Based on in vivo test, As relative bioavailability was significantly reduced by 37.75%. Based on in vitro test, As bioaccessibility in small intestinal and colon phases was significantly reduced by 25.65% and 28.57%, respectively. Furthermore, As metabolism (reduction and methylation) by the gut microbiota inhabiting colon was clearly observed. After immobilisation with CaAl-LDH, the concentration of bioaccessible As(â ¤) in the colon fluid was significantly reduced by 61.91%, and organic As (least toxic MMA(V) and DMA(V)) became the main species, which further reduced the health risk of soil As. In summary, CaAl-LDH proved to be a feasible option for immobilisation remediation of As-contaminated soils, and considerable progress was made in relevant health risk assessment.
Assuntos
Arsênio , Poluentes do Solo , Animais , Humanos , Camundongos , Arsênio/química , Disponibilidade Biológica , Poluentes do Solo/análise , Solo/química , Medição de RiscoRESUMO
Adolescents' family obligation is a cultural strength that shows enduring prevalence in China. Given that the meaning of family obligation has undergone rapid changes in recent decades, it is crucial to examine the role of family obligation in adolescent adjustment in contemporary China. More importantly, although past research has investigated the consequences of family obligation on adolescents' adjustment, little is known about the antecedents of Chinese adolescents' family obligation. Using a two-wave longitudinal sample of 450 Chinese adolescents (mean age = 13.78 years, SD = .71 years; 49% female) and their parents, the current research explored two questions. First, this study examined the role of family obligation in adolescents' academic achievement, externalizing problems, and internalizing problems over early adolescence. Second, this study explored the role of parents in predicting Chinese adolescents' family obligation, specifically whether parental expectations or parental acceptance was predictive of adolescents' family obligation over time. Third, this study investigated whether family obligation is an underlying mechanism between parenting and Chinese adolescents' adjustment. Results showed that Chinese adolescents' family obligation was longitudinally associated with increased academic achievement and reduced externalizing problems. Moreover, perceived parental acceptance, but not parental expectations, was longitudinally associated with Chinese adolescents' greater family obligation. Notably, family obligation mediated the longitudinal effect of parental acceptance on Chinese adolescents' externalizing problems. By studying both the consequences and antecedents of Chinese adolescents' family obligation, this study helps provide a comprehensive understanding of this cultural strength.
Assuntos
Relações Pais-Filho , Poder Familiar , Humanos , Feminino , Adolescente , Masculino , China/epidemiologia , Estudos Longitudinais , Relações Pais-Filho/etnologia , Poder Familiar/psicologia , Comportamento do Adolescente/psicologia , Sucesso Acadêmico , Pais/psicologia , População do Leste AsiáticoRESUMO
Penicillium strains are renowned for producing diverse secondary metabolites with unique structures and promising bioactivities. Our chemical investigations, accompanied by fermentation media optimization, of a newly isolated fungus, Penicillium shentong XL-F41, led to the isolation of twelve compounds. Among these are two novel indole terpene alkaloids, shentonins A and B (1 and 2), and a new fatty acid 3. Shentonin A (1) is distinguished by an unusual methyl modification at the oxygen atom of the typical succinimide ring, a feature not seen in the structurally similar brocaeloid D. Additionally, shentonin A (1) exhibits a cis relationship between H-3 and H-4, as opposed to the trans configuration in brocaeloid D, suggesting a divergent enzymatic ring-expansion process in their respective fungi. Both shentonins A (1) and B (2) also feature a reduction of a carbonyl to a hydroxy group within the succinimide ring. All isolated compounds were subjected to antimicrobial evaluations, and compound 12 was found to have moderate inhibitory activity against Candia albicans. Moreover, genome sequencing of Penicillium shentong XL-F41 uncovered abundant silent biosynthetic gene clusters, indicating the need for future efforts to activate these clusters and unlock the full chemical potential of the fungus.
RESUMO
Whether coexisting microplastics (MPs) affect the ecological and health risks of cadmium (Cd) in soils is a cutting-edge scientific issue. In this study, four typical Chinese soils were prepared as artificially Cd-contaminated soils with/without aged polystyrene (PS). TCLP and in vitro PBET model were used to determine the leachability (ecological risk) and oral bioaccessibility (human health risk) of soil Cd. The mechanisms by which MPs influence soil Cd were discussed from direct and indirect perspectives. Results showed that there was no significant difference in the leachability of soil Cd with/without aged PS. Additionally, aged PS led to a significant decrease in the bioaccessibility of soil Cd in gastric phase, but not in small intestinal phase. The increase in surface roughness and the new characteristic peaks (e.g., Si-O-Si) of aged PS directly accounted for the change in Cd bioaccessibility. The change in organic matter content indirectly accounted for the exceptional increase in Cd bioaccessibility of black soil with aged PS in small intestinal phase. Furthermore, the changes in cation exchange capacity and Cd mobility factor caused by aged PS explained the change in Cd leachability. These results contribute to a deeper understanding about environmental and public health in complicated emerging scenarios.
Assuntos
Cádmio , Poluentes do Solo , Humanos , Idoso , Cádmio/toxicidade , Cádmio/análise , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Disponibilidade BiológicaRESUMO
Metal-organic frameworks (MOFs) have a high specific surface area, adjustable pores and can be used to obtain functional porous materials with diverse and well-ordered structures through coordination and self-assembly, which has intrigued wide interest in a broad range of disciplines. In the arena of biomedical engineering, the functionalized modification of MOFs has produced drug carriers with excellent dispersion and functionalities such as target delivery and response release, with promising applications in bio-detection, disease therapy, tissue healing, and other areas. This review summarizes the present state of research on the functionalization of MOFs by physical binding or chemical cross-linking of small molecules, polymers, biomacromolecules, and hydrogels and evaluates the role and approach of MOFs functionalization in boosting the reactivity of materials. On this basis, research on the application of functionalized MOFs composites in biomedical engineering fields such as drug delivery, tissue repair, disease treatment, bio-detection and imaging is surveyed, and the development trend and application prospects of functionalized MOFs as an important new class of biomedical materials in the biomedical field are anticipated, which may provide some inspiration and reference for further development of MOF for bio-medical applications.
RESUMO
The production of isolated metallic nanoparticles with multifunctionalized properties, such as size and shape, is crucial for biomedical, photocatalytic, and energy storage or remediation applications. This study investigates the initial particle formations of gold nanoparticles (AuNPs) bioproduced in the cyanobacteria Anabaena sp. using high-resolution transmission electron microscopy images for digital image analysis. The developed method enabled the discovery of cerium nanoparticles (CeNPs), which were biosynthesized in the cyanobacteria Calothrix desertica. The particle size distributions for AuNPs and CeNPs were analyzed. After 10 h, the average equivalent circular diameter for AuNPs was 4.8 nm, while for CeNPs, it was approximately 5.2 nm after 25 h. The initial shape of AuNPs was sub-round to round, while the shape of CeNPs was more roundish due to their amorphous structure and formation restricted to heterocysts. The local PSDs indicate that the maturation of AuNPs begins in the middle of vegetative cells and near the cell membrane, compared to the other regions of the cell.
RESUMO
Objective: To explore the mechanism of spleen tissue inflammatory response induced by altitude hypoxia in mice. Methods: C57BL/6 mice were randomly assigned to a plain, i.e., low-altitude, normoxia group and an altitude hypoxia group, with 5 mice in each group. In the plain normoxia group, the mice were kept in a normoxic environment at the altitude of 400 m above sea level (with an oxygen concentration of 19.88%). The mice in the altitude hypoxia group were kept in an environment at the altitude of 4200 m above sea level (with an oxygen concentration of 14.23%) to establish the animal model of altitude hypoxia. On day 30, spleen tissues were collected to determine the splenic index. HE staining was performed to observe the histopathological changes in the spleen tissues of the mice. Real time fluorogenic quantitative PCR (RT-qPCR) and Western blot were conducted to determine the mRNA and protein expressions of interleukin (IL)-6, IL-12, and IL-1ß in the spleen tissue of the mice. High-throughput transcriptome sequencing was performed with RNA sequencing (RNA-seq). KEGG enrichment analysis was performed for the differentially expressed genes (DEGs). The DEGs in the key pathways were verified by RT-qPCR. Results: Compared with the plain normoxia group, the mice exposed to high-altitude hypoxic environment had decreased spleen index (P<0.05) and exhibited such pathological changes as decreased white pulp, enlarged germinal center, blurred edge, and venous congestion. The mRNA and protein expression levels of IL-6, IL-12, and IL-1ß in the spleen tissue of mice in the altitude hypoxia group were up-regulated (P<0.05). According to the results of transcriptome sequencing and KEGG pathway enrichment analysis, 4218 DEGs were enriched in 178 enrichment pathways (P<0.05). DEGs were significantly enriched in multiple pathways associated with immunity and inflammation, such as T cell receptor signaling pathway, TNF signaling pathway, and IL-17 signaling pathway (P<0.05) in the spleen of mice exposed to high-altitude hypoxic environment. Among them, IL-17 signaling pathway and the downstream inflammatory factors were highly up-regulated (P<0.05). Compared with the plain normoxia group, the mRNA expression levels of key genes in the IL-17 signaling pathway, including IL-17, IL-17R, and mitogen-activated protein kinase genes (MAPKs), and the downstream inflammatory factors, including matrix metallopeptidase 9 (MMP9), S100 calcium binding protein A8 gene (S100A8), S100 calcium binding protein A9 gene (S100A9), and tumor necrosis factor α (TNF-α), were up-regulated or down-regulated (P<0.05) in the altitude hypoxia group. According to the validation of RT-qPCR results, the mRNA expression levels of DEGs were consistent with the RNA-seq results. Conclusion: Altitude hypoxia can induce inflammatory response in the mouse spleen tissue by activating IL-17 signaling pathway and promoting the release of downstream inflammatory factors.
Assuntos
Doença da Altitude , Interleucina-17 , Transdução de Sinais , Animais , Camundongos , Doença da Altitude/complicações , Proteínas de Ligação ao Cálcio , Hipóxia , Interleucina-12/metabolismo , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Oxigênio , RNA Mensageiro/metabolismo , BaçoRESUMO
This study investigates the anti-inflammatory effects of pectins with different degrees of methyl esterification (DM) on intestinal epithelial cells (IECs) expressing low and high levels of TLR2. It also studies the influence of soluble TLR2 (sTLR2) which may be enhanced in patients with inflammatory bowel syndrome on the inflammation-attenuating effects of pectins. Also, it examines the impact of pectins on tight junction gene expression in IECs. Lemon pectins with DM18 and DM88 were characterized, and their effects on TLR2-1-induced IL8 gene expression and secretion were investigated in low-TLR2 expressing Caco-2 and high-TLR2 expressing DLD-1 cells. The results demonstrate that both DM18 and DM88 pectins can counteract TLR2-1-induced IL-8 expression and secretion, with more pronounced effects observed in DLD-1 cells expressing high levels of TLR2. Furthermore, the presence of sTLR2 does not interfere with the attenuating effects of low DM18 pectin and may even support its anti-inflammatory effects in Caco-2 cells. The impact of pectins and sTLR2 on tight junction gene expression also demonstrates cell-type-dependent effects. Overall, these findings suggest that low DM pectins possess potent anti-inflammatory properties and may influence tight junction gene expression in IECs, thereby contributing to the maintenance of gut homeostasis.