Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Phys Rev E ; 109(4-1): 044130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755836

RESUMO

We employ the eigen microstates approach to explore the self-organized criticality (SOC) in two celebrated sandpile models, namely the BTW model and the Manna model. In both models, phase transitions from the absorbing state to the critical state can be understood by the emergence of dominant eigen microstates with significantly increased weights. Spatial eigen microstates of avalanches can be uniformly characterized by a linear system size rescaling. The first temporal eigen microstates reveal scaling relations in both models. Furthermore, by finite-size scaling analysis of the first eigen microstates, we numerically estimate critical exponents, i.e., sqrt[σ_{0}w_{1}]/v[over ̃]_{1}∝L^{D} and v[over ̃]_{1}∝L^{D(1-τ_{s})/2}. Our findings could provide profound insights into eigen microstates of the universality and phase transition in nonequilibrium complex systems governed by self-organized criticality.

2.
J Breast Cancer ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38769684

RESUMO

PURPOSE: The 21-gene recurrence score (RS) can guide adjuvant chemotherapy decisions in the multidisciplinary treatment (MDT) of patients with early breast cancer. This study aimed to evaluate the influence of the 21-gene RS assay on patient' compliance with MDT and its association with disease outcomes. METHODS: Patients diagnosed with pN0-1, hormone receptor-positive, human epidermal growth factor receptor-2-negative breast cancer between January 2013 and June 2019 were enrolled. A logistic regression model was used to identify parameters associated with treatment adherence. Prognostic indicators were evaluated using the Cox proportional hazard models. RESULTS: After the assay, patients were less likely to violate the treatment plan (14.9% vs. 23.1%, p < 0.001), and higher compliance rates were observed for chemotherapy (p = 0.042), radiotherapy (p = 0.012), and endocrine therapy (p < 0.001). Multivariable analysis demonstrated that the 21-gene RS assay (odds ratio [OR], 1.43; 95% confidence interval [CI], 1.09-1.88; p = 0.009) was independently associated with MDT compliance. Moreover, compliance with MDT was independently associated with better disease-free survival (hazard ratio, 0.43; 95% CI, 0.29-0.64; p < 0.001), regardless of the 21-gene RS assay (interaction p = 0.842). CONCLUSION: The 21-gene RS assay improved the MDT compliance rate in patients with early breast cancer. Adherence to MDT is associated with a better prognosis.

3.
Eur J Med Res ; 29(1): 257, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689322

RESUMO

BACKGROUND: This study aimed to explore the expression, molecular mechanism and its biological function of potassium two pore domain channel subfamily K member 1 (KCNK1) in bladder cancer (BC). METHODS: We integrated large numbers of external samples (n = 1486) to assess KCNK1 mRNA expression levels and collected in-house samples (n = 245) for immunohistochemistry (IHC) experiments to validate at the KCNK1 protein level. Single-cell RNA sequencing (scRNA-seq) analysis was performed to further assess KCNK1 expression and cellular communication. The transcriptional regulatory mechanisms of KCNK1 expression were explored by ChIP-seq, ATAC-seq and ChIA-PET data. Highly expressed co-expressed genes (HECEGs) of KCNK1 were used to explore potential signalling pathways. Furthermore, the immunoassay, clinical significance and molecular docking of KCNK1 were calculated. RESULTS: KCNK1 mRNA was significantly overexpressed in BC (SMD = 0.58, 95% CI [0.05; 1.11]), validated at the protein level (p < 0.0001). Upregulated KCNK1 mRNA exhibited highly distinguishing ability between BC and control samples (AUC = 0.82 [0.78-0.85]). Further, scRNA-seq analysis revealed that KCNK1 expression was predominantly clustered in BC epithelial cells and tended to increase with cellular differentiation. BC epithelial cells were involved in cellular communication mainly through the MK signalling pathway. Secondly, the KCNK1 transcription start site (TSS) showed promoter-enhancer interactions in three-dimensional space, while being transcriptionally regulated by GRHL2 and FOXA1. Most of the KCNK1 HECEGs were enriched in cell cycle-related signalling pathways. KCNK1 was mainly involved in cellular metabolism-related pathways and regulated cell membrane potassium channel activity. KCNK1 expression was associated with the level of infiltration of various immune cells. Immunotherapy and chemotherapy (docetaxel, paclitaxel and vinblastine) were more effective in BC patients in the high KCNK1 expression group. KCNK1 expression correlated with age, pathology grade and pathologic_M in BC patients. CONCLUSIONS: KCNK1 was significantly overexpressed in BC. A complex and sophisticated three-dimensional spatial transcriptional regulatory network existed in the KCNK1 TSS and promoted the upregulated of KCNK1 expression. The high expression of KCNK1 might be involved in the cell cycle, cellular metabolism, and tumour microenvironment through the regulation of potassium channels, and ultimately contributed to the deterioration of BC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Canais de Potássio de Domínios Poros em Tandem , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Simulação de Acoplamento Molecular , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
4.
Cell Metab ; 36(5): 1013-1029.e5, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38547864

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.


Assuntos
Inosina , Camundongos Endogâmicos C57BL , Mitocôndrias , Transcetolase , Animais , Transcetolase/metabolismo , Camundongos , Inosina/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Camundongos Knockout , Fígado/metabolismo , Hiperinsulinismo/metabolismo , Feminino
5.
Adv Sci (Weinh) ; 11(19): e2308338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447188

RESUMO

Liquid‒liquid phase separation (LLPS) is a ubiquitous process in which proteins, RNA, and biomolecules assemble into membrane-less compartments, playing important roles in many biological functions and diseases. The current knowledge on the biophysical and biochemical principles of LLPS is largely from in vitro studies; however, the physiological environment in living cells is complex and not at equilibrium. The characteristics of intracellular dynamics and their roles in physiological LLPS remain to be resolved. Here, by using single-particle tracking of quantum dots and dynamic monitoring of the formation of stress granules (SGs) in single cells, the spatiotemporal dynamics of intracellular transport in cells undergoing LLPS are quantified. It is shown that intracellular diffusion and active transport are both reduced. Furthermore, the formation of SG droplets contributes to increased spatial heterogeneity within the cell. More importantly, the study demonstrated that the LLPS of SGs can be regulated by intracellular dynamics in two stages: the reduced intracellular diffusion promotes SG assembly and the microtubule-associated transport facilitates SG coalescences. The work on intracellular dynamics not only improves the understanding of the mechanism of physiology phase separations occurring in nonequilibrium environments but also reveals an interplay between intracellular dynamics and LLPS.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/metabolismo , Transporte Biológico/fisiologia , Grânulos de Estresse/metabolismo , Separação de Fases
6.
Adv Mater ; : e2400089, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498771

RESUMO

Organic field-effect transistors (OFETs) have broad prospects in biomedical, sensor, and aerospace applications. However, obtaining temperature-immune OFETs is difficult because the electrical properties of organic semiconductors (OSCs) are temperature-sensitive. The zero-temperature coefficient (ZTC) point behavior can be used to achieve a temperature-immune output current; however, it is difficult to achieve in organic devices with thermal activation characteristics, according to the existing ZTC point theory. Here, the Fermi pinning in OSCs is eliminated using the defect passivation strategy, making the Fermi level closer to the tail state at low temperatures; thus threshold voltage (VT) is negatively correlated with temperature. ZTC point behaviors in OFETs are achieved by compensation between VT and mobility at different temperatures to improve its temperature immunity. A temperature-immune output current can be realized in a variable-temperature bias voltage test over 50000 s by biasing the device at the ZTC point. This study provides an effective solution for temperature-immune OFETs and inspiration for their practical application.

7.
Eur Radiol ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329503

RESUMO

OBJECTIVES: Anti-HER2 targeted therapy significantly reduces risk of relapse in HER2 + breast cancer. New measures are needed for a precise risk stratification to guide (de-)escalation of anti-HER2 strategy. METHODS: A total of 726 HER2 + cases who received no/single/dual anti-HER2 targeted therapies were split into three respective cohorts. A deep learning model (DeepTEPP) based on preoperative breast magnetic resonance (MR) was developed. Patients were scored and categorized into low-, moderate-, and high-risk groups. Recurrence-free survival (RFS) was compared in patients with different risk groups according to the anti-HER2 treatment they received, to validate the value of DeepTEPP in predicting treatment efficacy and guiding anti-HER2 strategy. RESULTS: DeepTEPP was capable of risk stratification and guiding anti-HER2 treatment strategy: DeepTEPP-Low patients (60.5%) did not derive significant RFS benefit from trastuzumab (p = 0.144), proposing an anti-HER2 de-escalation. DeepTEPP-Moderate patients (19.8%) significantly benefited from trastuzumab (p = 0.048), but did not obtain additional improvements from pertuzumab (p = 0.125). DeepTEPP-High patients (19.7%) significantly benefited from dual HER2 blockade (p = 0.045), suggesting an anti-HER2 escalation. CONCLUSIONS: DeepTEPP represents a pioneering MR-based deep learning model that enables the non-invasive prediction of adjuvant anti-HER2 effectiveness, thereby providing valuable guidance for anti-HER2 (de-)escalation strategies. DeepTEPP provides an important reference for choosing the appropriate individualized treatment in HER2 + breast cancer patients, warranting prospective validation. CLINICAL RELEVANCE STATEMENT: We built an MR-based deep learning model DeepTEPP, which enables the non-invasive prediction of adjuvant anti-HER2 effectiveness, thus guiding anti-HER2 (de-)escalation strategies in early HER2-positive breast cancer patients. KEY POINTS: • DeepTEPP is able to predict anti-HER2 effectiveness and to guide treatment (de-)escalation. • DeepTEPP demonstrated an impressive prognostic efficacy for recurrence-free survival and overall survival. • To our knowledge, this is one of the very few, also the largest study to test the efficacy of a deep learning model extracted from breast MR images on HER2-positive breast cancer survival and anti-HER2 therapy effectiveness prediction.

8.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341762

RESUMO

Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.

9.
Oncol Lett ; 27(3): 95, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288042

RESUMO

Axillary lymph node (ALN) status is a key prognostic factor in patients with early-stage invasive breast cancer (IBC). The present study aimed to develop and validate a nomogram based on multimodal ultrasonographic (MMUS) features for early prediction of axillary lymph node metastasis (ALNM). A total of 342 patients with early-stage IBC (240 in the training cohort and 102 in the validation cohort) who underwent preoperative conventional ultrasound (US), strain elastography, shear wave elastography and contrast-enhanced US examination were included between August 2021 and March 2022. Pathological ALN status was used as the reference standard. The clinicopathological factors and MMUS features were analyzed with uni- and multivariate logistic regression to construct a clinicopathological and conventional US model and a MMUS-based nomogram. The MMUS nomogram was validated with respect to discrimination, calibration, reclassification and clinical usefulness. US features of tumor size, echogenicity, stiff rim sign, perfusion defect, radial vessel and US Breast Imaging Reporting and Data System category 5 were independent risk predictors for ALNM. MMUS nomogram based on these factors demonstrated an improved calibration and favorable performance [area under the receiver operator characteristic curve (AUC), 0.927 and 0.922 in the training and validation cohorts, respectively] compared with the clinicopathological model (AUC, 0.681 and 0.670, respectively), US-depicted ALN status (AUC, 0.710 and 0.716, respectively) and the conventional US model (AUC, 0.867 and 0.894, respectively). MMUS nomogram improved the reclassification ability of the conventional US model for ALNM prediction (net reclassification improvement, 0.296 and 0.288 in the training and validation cohorts, respectively; both P<0.001). Taken together, the findings of the present study suggested that the MMUS nomogram may be a promising, non-invasive and reliable approach for predicting ALNM.

10.
Nat Commun ; 15(1): 626, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245526

RESUMO

Optoelectronic properties of semiconductors are significantly modified by impurities at trace level. Oxygen, a prevalent impurity in organic semiconductors (OSCs), has long been considered charge-carrier traps, leading to mobility degradation and stability problems. However, this understanding relies on the conventional deoxygenation methods, by which oxygen residues in OSCs are inevitable. It implies that the current understanding is questionable. Here, we develop a non-destructive deoxygenation method (i.e., de-doping) for OSCs by a soft plasma treatment, and thus reveal that trace oxygen significantly pre-empties the donor-like traps in OSCs, which is the origin of p-type characteristics exhibited by the majority of these materials. This insight is completely opposite to the previously reported carrier trapping and can clarify some previously unexplained organic electronics phenomena. Furthermore, the de-doping results in the disappearance of p-type behaviors and significant increase of n-type properties, while re-doping (under light irradiation in O2) can controllably reverse the process. Benefiting from this, the key electronic characteristics (e.g., polarity, conductivity, threshold voltage, and mobility) can be precisely modulated in a nondestructive way, expanding the explorable property space for all known OSC materials.

11.
Rheumatology (Oxford) ; 63(1): 251-258, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37184873

RESUMO

OBJECTIVES: Galectin-9, as immune checkpoint protein, plays a role in regulating autoimmunity and tumour immunity. Therefore, we explored the pathophysiological link between galectin-9 and malignancy in cancer-related DM (CRDM). METHODS: Serum galectin-9 were quantified via enzyme-linked immunosorbent assay, and its association with serological indices was evaluated using Spearman analysis. Receiver operating characteristic (ROC) analysis was utilized to determine the cut-off value of galectin-9. RESULTS: Serum levels of galectin-9 were significantly higher in DM patients [23.38 (13.85-32.57) ng/ml] than those in healthy controls (HCs) [6.81 (5.42-7.89) ng/ml, P < 0.0001], and were positively correlated with the cutaneous dermatomyositis disease area severity index activity (CDASI-A) scores (rs=0.3065, P = 0.0172). DM patients with new-onset and untreated cancer (new-CRDM) [31.58 (23.85-38.84) ng/ml] had higher levels of galectin-9 than those with stable and treated cancer (stable-CRDM) [17.49 (10.23-27.91) ng/ml, P = 0.0288], non-cancer-related DM (non-CRDM) [21.05 (11.97-28.02) ng/ml, P = 0.0258], and tumour patients without DM [7.46 (4.90-8.51) ng/ml, P < 0.0001]. Serum galectin-9 levels significantly decreased [27.79 (17.04-41.43) ng/ml vs 13.88 (5.15-20.37) ng/ml, P = 0.002] after anti-cancer treatment in CRDM patients. The combination of serum galectin-9 and anti-transcriptional intermediary factor 1-γ (anti-TIF1-γ) antibody (AUC = 0.889, 95% CI 0.803-0.977) showed the highest predictive value for the presence of cancer in DM. CONCLUSION: Increased galectin-9 levels were related to tumor progression in CRDM, and galectin-9 was downregulated upon cancer treatment. Monitoring serum galectin-9 levels and anti-TIF1-γ antibodies might be an attractive strategy to achieve tumour diagnosis and predict CRDM outcome.


Assuntos
Dermatomiosite , Neoplasias , Humanos , Dermatomiosite/complicações , Neoplasias/complicações , Galectinas , Anticorpos , Biomarcadores , Autoanticorpos
12.
Ultrasound Med Biol ; 50(2): 229-236, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37951821

RESUMO

OBJECTIVE: The aim of the work described here was to assess the application of ultrasound (US) radiomics with machine learning (ML) classifiers to the prediction of axillary sentinel lymph node metastasis (SLNM) burden in early-stage invasive breast cancer (IBC). METHODS: In this study, 278 early-stage IBC patients with at least one SLNM (195 in the training set and 83 in the test set) were studied at our institution. Pathologic SLNM burden was used as the reference standard. The US radiomics features of breast tumors were extracted by using 3D-Slicer and PyRadiomics software. Four ML classifiers-linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF) and decision tree (DT)-were used to construct radiomics models for the prediction of SLNM burden. The combined clinicopathologic-radiomics models were also assessed with respect to sensitivity, specificity, accuracy and areas under the curve (AUCs). RESULTS: Among the US radiomics models, the SVM classifier achieved better predictive performance with an AUC of 0.920 compared with RF (AUC = 0.874), LDA (AUC = 0.835) and DT (AUC = 0.800) in the test set. The clinicopathologic model had low efficacy, with AUCs of 0.678 and 0.710 in the training and test sets, respectively. The combined clinicopathologic (C) factors and SVM classifier (C + SVM) model improved the predictive ability with an AUC of 0.934, sensitivity of 86.7%, specificity of 89.9% and accuracy of 91.0% in the test set. CONCLUSION: ML-based US radiomics analysis, as a novel and promising predictive tool, is conducive to a precise clinical treatment strategy.


Assuntos
Neoplasias da Mama , Linfadenopatia , Segunda Neoplasia Primária , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Ultrassonografia , Aprendizado de Máquina , Estudos Retrospectivos
13.
Sci Adv ; 9(49): eadj4656, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055810

RESUMO

Intrinsic gain is a vital figure of merit in transistors, closely related to signal amplification, operation voltage, power consumption, and circuit simplification. However, organic thin-film transistors (OTFTs) targeted at high gain have suffered from challenges such as narrow subthreshold operating voltage, low-quality interface, and uncontrollable barrier. Here, we report a van der Waals metal-barrier interlayer-semiconductor junction-based OTFT, which shows ultrahigh performance including ultrahigh gain of ~104, low saturation voltage, negligible hysteresis, and good stability. The high-quality van der Waals-contacted junctions are mainly attributed to patterning EGaIn liquid metal electrodes by low-energy microfluidic processes. The wide-bandgap semiconductor Ga2O3 as barrier interlayer is achieved by in situ surface oxidation of EGaIn electrodes, allowing for an adjustable barrier height and expected thermionic emission properties. The organic inverters with a high gain of 5130 and a simplified current stabilizer are further demonstrated, paving a way for high-gain and low-power organic electronics.

14.
Gland Surg ; 12(11): 1475-1484, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38107490

RESUMO

Background: The demand for immediate breast reconstruction with a deep inferior epigastric perforator (DIEP) flap is recovering as coronavirus disease 2019 (COVID-19) transitions from a pandemic to an endemic. This study sought to evaluate the safety of resuming DIEP flap reconstruction in the post-COVID-19 era. Methods: Consecutive breast cancer patients who underwent immediate breast reconstruction with a DIEP flap at the Comprehensive Breast Health Center, Ruijin Hospital were retrospectively included in the study. The patients were divided into a post-pandemic group (Group A) and a pre-pandemic group (Group B). The clinicopathological factors, surgical procedures, and rates of post-operative complications were compared between the two groups using the Mann-Whitney U test and Chi-squared test. Results: A total of 167 patients were included in the study, of whom 119 (71.3%) were in Group A and 48 (28.7%) were in Group B. The two groups had similar clinicopathological features, including age (P=0.988), body mass index (P=0.504), and tumor, node, metastasis (TNM) stage (P=0.932). The Group A patients were more likely to receive single perforator DIEP flap transplantation than the Group B patients (n=28, 22.8% vs. n=3, 5.8%, P=0.007). There was a numerical decrease in the mean operating time of Group A patients compared to Group B patients (9.82 vs. 10.12 hours, P=0.172). The mean length of stay after the surgery was significantly shorter after the pandemic than before the pandemic (11.2 vs. 14.3 days, P<0.001). The complication rates between the two groups were similar. Conclusions: This study provides evidence that resuming DIEP reconstruction is safe in the post-COVID-19 era.

15.
Front Immunol ; 14: 1295558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124743

RESUMO

Triple-negative breast cancer (TNBC) is a highly heterogeneous tumor that lacks effective treatment and has a poor prognosis. Exosomes carry abundant genomic information and have a significant role in tumorigenesis, metastasis, and drug resistance. However, further exploration is needed to investigate the relationship between exosome-related genes and the heterogeneity and tumor immune microenvironment of TNBC. Based on the exosome-related gene sets, multiple machine learning algorithms, such as Cox boost, were used to screen the risk score model with the highest C-index. A 9-gene risk score model was constructed, and the TNBC population was divided into high- and low-risk groups. The effectiveness of this model was verified in multiple datasets. Compared with the low-risk group, the high-risk group exhibited a poorer prognosis, which may be related to lower levels of immune infiltration and immune response rates. The gene mutation profiles and drug sensitivity of the two groups were also compared. By screening for genes with the most prognostic value, the hub gene, CLDN7, was identified, and thus, its potential role in predicting prognosis, as well as providing ideas for the clinical diagnosis, treatment, and risk assessment of TNBC, was also discussed. This study demonstrates that exosome-related genes can be used for risk stratification in TNBC, identifying patients with a worse prognosis. The high-risk group exhibited a poorer prognosis and required more aggressive treatment strategies. Analysis of the genomic information in patient exosomes may help to develop personalized treatment decisions and improve their prognosis. CLDN7 has potential value in prognostic prediction in the TNBC population.


Assuntos
Exossomos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Exossomos/genética , Perfilação da Expressão Gênica , Transcriptoma , Fatores de Risco , Microambiente Tumoral/genética
16.
Front Med ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157193

RESUMO

p53 is mutated in half of cancer cases. However, no p53-targeting drugs have been approved. Here, we reposition decitabine for triple-negative breast cancer (TNBC), a subtype with frequent p53 mutations and extremely poor prognosis. In a retrospective study on tissue microarrays with 132 TNBC cases, DNMT1 overexpression was associated with p53 mutations (P = 0.037) and poor overall survival (OS) (P = 0.010). In a prospective DEciTabinE and Carboplatin in TNBC (DETECT) trial (NCT03295552), decitabine with carboplatin produced an objective response rate (ORR) of 42% in 12 patients with stage IV TNBC. Among the 9 trialed patients with available TP53 sequencing results, the 6 patients with p53 mutations had higher ORR (3/6 vs. 0/3) and better OS (16.0 vs. 4.0 months) than the patients with wild-type p53. In a mechanistic study, isogenic TNBC cell lines harboring DETECT-derived p53 mutations exhibited higher DNMT1 expression and decitabine sensitivity than the cell line with wild-type p53. In the DETECT trial, decitabine induced strong immune responses featuring the striking upregulation of the innate immune player IRF7 in the p53-mutated TNBC cell line (upregulation by 16-fold) and the most responsive patient with TNBC. Our integrative studies reveal the potential of repurposing decitabine for the treatment of p53-mutated TNBC and suggest IRF7 as a potential biomarker for decitabine-based treatments.

17.
Gland Surg ; 12(10): 1375-1386, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38021197

RESUMO

Background: Triple-negative breast cancer (TNBC) is characterized by aggressive phonotypes and relatively poor outcomes. There are controversies on the effect of adjuvant chemotherapy in small (T1N0M0) TNBCs, especially among T1a-b patients. This study evaluated the survival benefit of adjuvant chemotherapy and influential factors in T1N0M0 TNBC patients. Methods: All T1N0M0 TNBC patients were identified from the Shanghai Jiao Tong University Breast Cancer Database (SJTU-BCDB) between January 2009 and December 2021. Propensity score matched (PSM) was applied to create a matched cohort. We used Kaplan-Meier analysis and Cox regression models to evaluate the associations of adjuvant chemotherapy with breast cancer-free interval (BCFI) and overall survival (OS). Stratified analysis according to different influential factors was also performed. Results: In total, 1,113 T1N0M0 TNBC patients (297 T1a, T1b and 816 T1c) were enrolled, including 928 patients with adjuvant chemotherapy and 185 patients without adjuvant chemotherapy. After matching 441 patients by using PSM analysis, 294 patients with chemotherapy and 147 patients without chemotherapy were identified. Patients with or without chemotherapy had similar BCFI (P=0.241) and OS (P=0.509). However, regarding patients with different tumor sizes, adjuvant chemotherapy could significantly improve BCFI in T1c patients (5-year BCFI: 92.1% vs. 79.5%, P=0.035) but not in T1a-b patients (5-year BCFI: 93.6% vs. 94.6%, P=0.546). No significant difference in OS was observed among patients with different tumor sizes. Subgroup analysis found that only tumor size was significantly associated with adjuvant chemotherapy benefit in terms of BCFI (Pinteraction=0.021) and OS (Pinteraction=0.040). Conclusions: The survival benefit of adjuvant chemotherapy was significantly associated with tumor size in T1N0M0 TNBC. Benefit of adjuvant chemotherapy was found in T1c, but not in T1a-b patients. Our findings do not support the routine use of chemotherapy in patients with T1a-bN0 TNBC.

18.
PLoS Comput Biol ; 19(11): e1011636, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976299

RESUMO

Schooling fish heavily rely on visual cues to interact with neighbors and avoid obstacles. The availability of sensory information is influenced by environmental conditions and changes in the physical environment that can alter the sensory environment of the fish, which in turn affects individual and group movements. In this study, we combine experiments and data-driven modeling to investigate the impact of varying levels of light intensity on social interactions and collective behavior in rummy-nose tetra fish. The trajectories of single fish and groups of fish swimming in a tank under different lighting conditions were analyzed to quantify their movements and spatial distribution. Interaction functions between two individuals and the fish interaction with the tank wall were reconstructed and modeled for each light condition. Our results demonstrate that light intensity strongly modulates social interactions between fish and their reactions to obstacles, which then impact collective motion patterns that emerge at the group level.


Assuntos
Comportamento Social , Interação Social , Animais , Comportamento Animal/fisiologia , Modelos Biológicos , Peixes/fisiologia , Natação/fisiologia
19.
Cell Biosci ; 13(1): 184, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784089

RESUMO

BACKGROUND: CD24+CK19+/CD24+SOX9+ resident liver cells are activated and expanded after chronic liver injury in a ductular reaction. However, the sources and functions of these cells in liver damage remain disputed. RESULTS: The current study combined genetic lineage tracing with in vitro small-molecule-based reprogramming to define liver progenitor cells (LPCs) derived from hepatic parenchymal and non-parenchymal tissues. tdTom+ hepatocytes were isolated from ROSA26tdTomato mice following AAV8-Tbg-Cre-mediated recombination, EpCAM+ biliary epithelial cells (BECs) from wild-type intrahepatic bile ducts and ALB/GFP-EpCAM- cells were isolated from AlbCreERT/R26GFP mice. A cocktail of small molecules was used to convert the isolated cells into LPCs. These in vitro cultured LPCs with CD24 and SOX9 expression regained the ability to proliferate. Transcriptional profiling showed that the in-vitro cultured LPCs derived from the resident LPCs in non-parenchymal tissues expressed Lipocalin-2 (Lcn2) at high levels. Accordingly, endogenous Cd24a+Lcn2+ LPCs were identified by integration of sc-RNA-sequencing and pathological datasets of liver dysfunction which indicates that LPCs produced by ductular reactions might also originate from the resident LPCs. Transplantation of in-vitro cultured Cd24a+Lcn2+ LPCs into CCl4-induced fibrotic livers exacerbated liver damage and dysfunction, possibly due to LCN2-dependent macrophage inflammatory response. CONCLUSIONS: CD24+LCN2+ LPCs constituted the expanding ductular reaction and contributed to macrophage-mediated inflammation in chronic liver damage. The current findings highlight the roles of LPCs from distinct origins and expose the possibility of targeting LPCs in the treatment of chronic hepatic diseases.

20.
Cell Death Dis ; 14(10): 703, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898619

RESUMO

Cancer-associated adipocytes (CAAs), one of the primary stromal components, exhibit intimate crosstalk and release multiple cell factors mediating local and systemic biological effects. However, the role of CAAs in the regulation of systemic immune responses and their potential value in the clinical treatment of triple-negative breast cancer (TNBC) are not well described. Transcriptome sequencing was performed on CAA and normal adipocyte (NA) tissues isolated from surgically resected samples from TNBC patients and healthy controls. Cytokines, including C-X-C motif chemokine ligand 8 (CXCL8, also known as IL-8), secreted from NAs and CAAs were compared by transcriptome sequencing and enzyme-linked immunosorbent assay (ELISA). Proliferation, migration and invasion assays were employed to analyze the role of CAAs and CAA-derived CXCL8 (macrophage inflammatory protein-2 (MIP2) as a functional surrogate in mice). TNBC syngraft models were established to evaluate the curative effect of targeting CXCL8 in combination with anti-PD-1 therapies. Real-time quantitative polymerase chain reaction (RT-qPCR), western blotting (WB), polymerase chain reaction (PCR) array, flow cytometry, immunohistochemistry (IHC), and immunofluorescence (IF) were applied to analyze immune cell infiltration and epithelial-mesenchymal transition (EMT) markers. Specifically, we demonstrated that CAAs and CAA-derived CXCL8 played important roles in tumor growth, EMT, metastasis and tumor immunity suppression. CAA-derived CXCL8 remodeled the tumor immune microenvironment not only by suppressing CD4+ T and CD8+ T immune cell infiltration but also by upregulating CD274 expression in TNBC. The combination of targeting the CXCL8 pathway and blocking the PD-1 pathway synergistically increased the tumor immune response and inhibited tumor progression. Thus, our results highlight the molecular mechanisms and translational significance of CAAs in tumor progression and immune ecosystem regulatory effects and provide a better understanding of the potential clinical benefit of targeting CAA-derived CXCL8 in antitumor immunity and as a new therapeutic moiety in TNBC.


Assuntos
Interleucina-8 , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Interleucina-8/genética , Interleucina-8/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Ecossistema , Imunoterapia , Adipócitos/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA