Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSystems ; 3(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30417114

RESUMO

The gut microbiota plays an essential role in the health of bees. To elucidate the effect of feed and Nosema ceranae infection on the gut microbiota of honey bee (Apis cerana), we used 16S rRNA sequencing to survey the gut microbiota of honey bee workers fed with sugar water or beebread and inoculated with or without N. ceranae. The gut microbiota of A. cerana is dominated by Serratia, Snodgrassella, and Lactobacillus genera. The overall gut microbiota diversity was show to be significantly differential by feeding type. N. ceranae infection significantly affects the gut microbiota only in bees fed with sugar water. Higher abundances of Lactobacillus, Gluconacetobacter, and Snodgrassella and lower abundances of Serratia were found in bees fed with beebread than in those fed with sugar water. N. ceranae infection led to a higher abundance of Snodgrassella and a lower abundance of Serratia in sugar-fed bees. Imputed bacterial Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed the significant metagenomics functional differences by feeding and N. ceranae infections. Furthermore, A. cerana workers fed with sugar water showed lower N. ceranae spore loads but higher mortality than those fed with beebread. The cumulative mortality was strongly positive correlated (rho = 0.61) with the changes of overall microbiota dissimilarities by N. ceranae infection. Both feeding types and N. ceranae infection significantly affect the gut microbiota in A. cerana workers. Beebread not only provides better nutrition but also helps establish a more stable gut microbiota and therefore protects bees in response to N. ceranae infection. IMPORTANCE The gut microbiota plays an essential role in the health of bees. Scientific evidence suggests that diet and infection can affect the gut microbiota and modulate the health of the gut; however, the interplay between those two factors and the bee gut microbiota is not well known. In this study, we used a high-throughput sequencing method to monitor the changes of gut microbiota associated with both feeding types and Nosema ceranae infection. Our results showed that the gut microbiota composition and diversity of Asian honey bee were significantly associated with both feeding types and the N. ceranae infection. More interestingly, bees fed with beebread showed higher microbiota stability and lower mortality rates than those fed with sugar water when infected by N. ceranae. Those data suggest that beebread has the potential not only to provide better nutrition but also help to establish a more stable gut microbiota to protect bees against N. ceranae infection.

2.
J Insect Sci ; 10: 203, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21268696

RESUMO

The effects of 16 sugars (arabinose, cellobiose, fructose, galactose, gentiobiose, glucose, inositol, lactose, maltose, mannitol (a sugar alcohol), mannose, melibiose, ribose, sorbitol, trehalose, and xylose) on sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) survival were determined using in vitro bioassays. Of these sugars, arabinose, mannose, ribose, and xylose were strongly inhibitory to both nymphal and adult survival. When 10% mannose was added to the nymphal diet, 10.5%, 1.0%, and 0% developed to the 2nd, 3rd, and 4th instars, respectively. When 10% arabinose was added, 10.8% and 0% of the nymphs molted to the 2nd and 3rd instars, respectively. Addition of 10% xylose or ribose completely terminated B. tabaci development, preventing the molt to the 2(nd) instar. With decreasing sugar concentrations the inhibitory effect was significantly reduced. In tests using adults, arabinose, galactose, inositol, lactose, maltose, mannitol, mannose, melibiose, ribose, sorbitol, trehalose, and xylose significantly reduced mean day survival. Mortality rates were highest when arabinose, mannitol, mannose, ribose, or xylose was added to the diet. Mean day survival was less than 2 days when adults were fed on diet containing 10% of any one of these five sugars. When lower concentrations of sugars were used there was a decrease in mortality. Mode of action studies revealed that toxicity was not due to the inhibition of alpha glucosidase (converts sucrose to glucose and fructose) and/or trehalulose synthase (converts sucrose to trehalulose) activity. The result of agarose gel electrophoresis of RT-PCR products of bacterial endosymbionts amplified from RNA isolated from whiteflies fed with 10% arabinose, mannose, or xylose indicated that the concentration of endosymbionts in mycetomes was not affected by the toxic sugars. Experiments in which B. tabaci were fed on diets that contained radio-labeled sucrose, methionine or inulin and one or none (control) of the highly toxic sugars showed that radioactivity (expressed in DPM) in the body, in excreted honeydew and/or carbon dioxide, was significantly reduced as compared to controls. Thus, it appears that the ability of insecticidal sugars to act as antifeedants is responsible for their toxicity to B. tabaci.


Assuntos
Carboidratos/química , Carboidratos/farmacologia , Hemípteros/efeitos dos fármacos , Animais , Inseticidas/química , Inseticidas/farmacologia , Ninfa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA