Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 354: 124178, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763294

RESUMO

Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.

2.
J Biol Chem ; 299(12): 105481, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041932

RESUMO

Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Oxigênio Singlete/metabolismo , Transcriptoma , Estômatos de Plantas/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675085

RESUMO

Photosynthetic capacity is usually affected by light intensity in the field. In this study, photosynthetic characteristics of four different Triticeae crops (wheat, triticale, barley, and highland barley) were investigated based on chlorophyll fluorescence and the level of photosynthetic proteins under high light. Compared with wheat, three cereals (triticale, barley, and highland barley) presented higher photochemical efficiency and heat dissipation under normal light and high light for 3 h, especially highland barley. In contrast, lower photoinhibition was observed in barley and highland barley relative to wheat and triticale. In addition, barley and highland barley showed a lower decline in D1 and higher increase in Lhcb6 than wheat and triticale under high light. Furthermore, compared with the control, the results obtained from PSII protein phosphorylation showed that the phosphorylation level of PSII reaction center proteins (D1 and D2) was higher in barley and highland barley than that of wheat and triticale. Therefore, we speculated that highland barley can effectively alleviate photodamages to photosynthetic apparatus by high photoprotective dissipation, strong phosphorylation of PSII reaction center proteins, and rapid PSII repair cycle under high light.


Assuntos
Clorofila , Hordeum , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/fisiologia , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Hordeum/metabolismo
4.
Ecotoxicol Environ Saf ; 249: 114356, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508799

RESUMO

Lead (Pb2+) pollution in the soil sub-ecosystem has been a continuously growing problem due to economic development and ever-increasing anthropogenic activities across the world. In this study, the photosynthetic performance and antioxidant capacity of Triticeae cereals (rye, wheat and triticale) were compared to assess the activities of antioxidants, the degree of oxidative damage, photochemical efficiency and the levels of photosynthetic proteins under Pb stress (0.5 mM, 1 mM and 2 mM Pb (NO3)2). Compared with triticale, Pb treatments imposed severe oxidative damage in rye and wheat. In addition, the highest activity of major antioxidant enzymes (SOD, POD, CAT, and GPX) was also found to be elevated. Triticale accumulated the highest Pb contents in roots. The concentration of mineral ions (Mg, Ca, and K) was also high in its leaves, compared with rye and wheat. Consistently, triticale showed higher photosynthetic activity under Pb stress. Immunoblotting of proteins revealed that rye and wheat have significantly lower levels of D1 (photosystem II subunit A, PsbA) and D2 (photosystem II subunit D, PsbD) proteins, while no obvious decrease was noticed in triticale. The amount of light-harvesting complex II b6 (Lhcb6; CP24) and light-harvesting complex II b5 (Lhcb5; CP26) was significantly increased in rye and wheat. However, the increase in PsbS (photosystem II subunit S) protein only occurred in wheat and triticale exposed to Pb treatment. Taken together, these findings demonstrate that triticale shows higher antioxidant capacity and photosynthetic efficiency than wheat and rye under Pb stress, suggesting that triticale has high tolerance to Pb and could be used as a heavy metal-tolerant plant.


Assuntos
Chumbo , Estresse Oxidativo , Complexo de Proteína do Fotossistema II , Secale , Poluentes do Solo , Triticale , Triticum , Ecossistema , Chumbo/toxicidade , Secale/efeitos dos fármacos , Secale/enzimologia , Triticale/efeitos dos fármacos , Triticale/enzimologia , Triticum/efeitos dos fármacos , Triticum/enzimologia , Poluentes do Solo/toxicidade
5.
Environ Pollut ; 319: 120973, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584859

RESUMO

Bioremediation with photosynthetic bacteria (PSB) is thought to be a promising removal method for hexavalent chromium [Cr(VI)]-containing wastewater. In the present study, Rhodobacter sphaeroides (R. sphaeroides) SC01 was used for the investigation of Cr(VI) removal in Cr(VI)-contaminated solution in the presence of melatonin. It was found that exogenous melatonin alleviated oxidative damage to R. sphaeroides SC01, increased Cr (VI) absorption capacity of cell membrane, and improved the reduction efficiency of Cr(VI) via the activation of chromate reductants. The results showed that melatonin could further promote the increase in Cr(VI) removal efficiency, reaching up to 97.8%. Furthermore, melatonin application resulted in 296.9%, 44.4%, and 69.7% upregulation of ascorbic acid (AsA), glutathione (GSH), and cysteine (Cys) relative to non-melatioin treated R. sphaeroides SC01 at 48 h. In addition, the resting cells, cell-free supernatants (CFS), and cell-free extracts (CFE) with melatonin had a higher Cr(VI) removal rate of 18.6%, 82.0%, and 15.2% compared with non-melatonin treated R. sphaeroides SC01. Fourier transform infrared spectroscopy (FTIR) revealed that melatonin increased the binding of Cr(III) with PO43- and CO groups on cell membrane of R. sphaeroides SC01. X-ray diffractometer (XRD) analysis demonstrated that melatonin remarkably bioprecipitated the production of CrPO4·6H2O in R. sphaeroides SC01. Hence, these results indicated that melatonin plays the important role in the reduction and uptake of Cr(VI), demonstrating it is a great promising strategy for the management of Cr(VI) contaminated wastewater in photosynthetic bacteria.


Assuntos
Melatonina , Rhodobacter sphaeroides , Poluentes Químicos da Água , Rhodobacter sphaeroides/metabolismo , Antioxidantes , Melatonina/farmacologia , Águas Residuárias , Cromo/química , Adsorção , Poluentes Químicos da Água/análise
6.
Chemosphere ; 311(Pt 1): 136861, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243096

RESUMO

Eliminating "sulfur starvation" caused by competition for sulfate transporters between chromate and sulfate is crucial to enhance the content of sulfur-containing compounds and improve the tolerance and reduction capability of Cr(VI) in bacteria. In this study, the effects of sulfur salts on the Cr(VI) bioremediation and the possible mechanism were investigated in Rhodobacter sphaeroides SC01 by cell imaging, spectroscopy, and biochemical measurements. The results showed that, when the concentration of metabisulfite was 2.0 g L-1, and the initial OD600 was 0.33, the reduction rate of R. sphaeroides SC01 reached up to 91.3% for 500 mg L-1 Cr(VI) exposure at 96 h. Moreover, thiosulfate and sulfite also markedly increased the concentration of reduced Cr(VI) in R. sphaeroides SC01. Furthermore, the characterization results revealed that -OH, -CONH, -COOH, -SO3, -PO3, and -S-S- played a major role in the adsorption of Cr, and Cr(III) reduced by bacteria was bioprecipitated in the production of Cr2P3S9 and CrPS4. In addition, R. sphaeroids SC01 combined with metabisulfite significantly increased the activity of glutathione peroxidase and the content of glutathione (GSH) and total sulfhydryl while decreasing reactive oxygen species (ROS) accumulation and cell death induced by Cr(VI) toxic. Overall, the results of this research revealed a highly efficient and reliable strategy for Cr(VI) removal by photosynthetic bacteria combined with sulfur salts in high-concentration Cr(VI)-contaminated wastewater.


Assuntos
Cromo , Sais , Sais/metabolismo , Cromo/química , Enxofre/farmacologia , Enxofre/metabolismo , Bactérias/metabolismo , Glutationa/metabolismo
7.
Front Plant Sci ; 13: 885781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909748

RESUMO

Bundle sheath cells play a crucial role in photosynthesis in C4 plants, but the structure and function of photosystem II (PSII) in these cells is still controversial. Photoprotective roles of bundle sheath chloroplasts at the occurrence of environmental stresses have not been investigated so far. Non-photochemical quenching (NPQ) of chlorophyll a fluorescence is the photoprotective mechanism that responds to a changing energy balance in chloroplasts. In the present study, we found a much higher NPQ in bundle sheath chloroplasts than in mesophyll chloroplasts under a drought stress. This change was accompanied by a more rapid dephosphorylation of light-harvesting complex II (LHCII) subunits and a greater increase in PSII subunit S (PsbS) protein abundance than in mesophyll cell chloroplasts. Histochemical staining of reactive oxygen species (ROS) suggested that the high NPQ may be one of the main reasons for the lower accumulation of ROS in bundle sheath chloroplasts. This may maintain the stable functioning of bundle sheath cells under drought condition. These results indicate that the superior capacity for dissipation of excitation energy in bundle sheath chloroplasts may be an environmental adaptation unique to C4 plants.

8.
Front Plant Sci ; 13: 966181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982696

RESUMO

It has been well demonstrated that melatonin plays an important protective role in photosynthesis of plants under various environmental stresses, while the detailed mechanisms by which melatonin protects photosystem II (PSII) under environmental stress are still unclear. In the study, the effects of melatonin on photosynthetic efficiency, energy dissipation, PSII protein composition, and reversible phosphorylation of thylakoid proteins were investigated in wheat plants under osmotic stress. The results showed that osmotic stress significantly reduced pigment content, photochemical efficiency of PSII, oxygen-evolving activity, and dissipation of excess excitation energy, while 25 µM melatonin applications greatly alleviated their decline under osmotic stress. Western blot data of PSII proteins revealed that melatonin upregulated the levels of D1, Lhcb5, Lhcb6, PsbQ, and PsbS proteins in wheat exposed to osmotic stress. In addition, thylakoid membrane proteins were strongly phosphorylated in wheat under osmotic stress with or without melatonin. Furthermore, the results from PSII protein dephosphorylation showed that exogenous melatonin promoted the dephosphorylation of LCHII, CP43, and D1 under osmotic stress. Therefore, our findings suggest that melatonin can provide an effective protection for the photosynthetic apparatus by the regulation of PSII proteins and the reversible phosphorylation of thylakoid proteins under drought stress.

9.
Foods ; 11(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892802

RESUMO

The quality of Tarocco blood orange (Citrus sinensis (L.) Osbeck), which has been cultivated for many years, has degraded substantially. Decreased sugar content, decreased blood color, and increased sour flavor have developed as a result. To improve fruit quality, we studied the effects of bagging and sodium nitroprusside, as a nitric oxide (NO) donor, on the fruit quality of Tarocco blood orange two months before picking. The results showed that NO treatment effectively improved the content of total soluble solids and limonene in the fruit, as well as the color and hardness of the fruit, but reduced the tannin content. It also increased the contents of soluble sugar, fructose, sucrose, vitamin C, amino acids, and mineral elements. NO treatment inhibited the activities of polygalacturonase and pectin esterase, delayed the degradation of protopectin, and promoted the accumulation of anthocyanins, total flavonoids, and flavonoids synthesis. Thus, NO treatment improved the aroma, flavors, and physical properties of blood orange fruit.

10.
Ecotoxicol Environ Saf ; 239: 113688, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35644094

RESUMO

Heavy metal air pollution poses a serious threat to human health and the environment in Chinese tourist cities. In this study, we investigated the temporal and spatial variations of atmospheric heavy metal pollution using moss bags in Xichang, a tourist destination in Southwest China. The biomonitoring investigation used an indigenous moss (Taxiphyllum taxirameum) transplanted into bags. Moss bags were exposed to 22 sites including industrial, agricultural, urban/residential, tourist, and high-traffic sites, across four different seasons in 2019-2020. The results showed that T. taxirameum was a good biomonitor of air pollution in Xichang. Among the 22 sample points, air pollution was the worst along the G102 motorway. Heavy metal emissions varied in different regions and directions. Temporal changes significantly influenced the heavy metals accumulated in moss bags, with low deposition of most elements observed at nearly all sampling sites in summer. Different seasons and regions were important factors affecting atmospheric heavy metal pollution. Based on the correlation analysis and the positive matric factorization model, the results revealed that heavy metals in moss bags in Xichang were mainly derived from anthropogenic sources and atmospheric deposition. Overall, this research provides an important reference for air pollution monitoring in urban areas.


Assuntos
Poluentes Atmosféricos , Briófitas , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Biológico , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise
12.
Chemosphere ; 292: 133466, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973246

RESUMO

Most hyperaccumulator plants have little economic values, and therefore have not been widely used in Cd-contaminated soils. Rape species are Cd hyperaccumulators with high economic values. Black mustard seed (Brassica juncea) has a higher accumulation ability and a higher tolerance for Cd than oilseed rape (Brassica napus), but its biomass is relatively low and its geographical distribution is limited. However, it is unknown why B. juncea (Bj) is more tolerant to and accumulates more Cd than B. napus (Bn). Here, we found that the differences in Cd accumulation and tolerance between the two species is mainly because Bj plants have higher levels of salicylic acid and glutamic acid than Bn plants. Exogenous salicylate and glutamate treatments enhanced Cd accumulation (salicylate + glutamate co-treatment doubled Cd accumulation level in Bn seedlings) but reduced oxidative stresses by increasing glutathione biosynthesis and activating phytochelatin-based sequestration of Cd into vacuoles. Our results provide a new idea to simultaneously improve Cd accumulation and Cd tolerance in B. napus.


Assuntos
Brassica napus , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Ácido Glutâmico , Mostardeira , Salicilatos
13.
Front Plant Sci ; 12: 752584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691129

RESUMO

Land plants live in a crisis-filled environment and the fluctuation of sunlight intensity often causes damage to photosynthetic apparatus. Phyto-melatonin is an effective bioactive molecule that helps plants to resist various biotic and abiotic stresses. In order to explore the role of melatonin under high light stress, we investigated the effects of melatonin on anti-oxidative system and photosynthesis of Arabidopsis thaliana under high light. Results showed that exogenous melatonin increased photosynthetic rate and protected photosynthetic proteins under high light. This was mainly owing to the fact that exogenous melatonin effectively decreased the accumulation of reactive oxygen species and protected integrity of membrane and photosynthetic pigments, and reduced cell death. Taken together, our study promoted more comprehensive understanding in the protective effects of exogenous melatonin under high light.

15.
Plant Sci ; 310: 110973, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315591

RESUMO

TaLHY is an MYB transcription factor (TF) that is upregulated by salicylic acid induction and shows circadian rhythms. However, the study of the upstream regulatory factors is still unclear. In this study, we cloned the promoter sequence of the TaLHY homologous genes, verified the activity of the promoters, and identified important regions that affect promoter activity. Furthermore, we explored a possible upstream regulator of TaLHY, named TaWRKY10, which played a key role in the expression of TaLHY. We found that the three promoters pTaLHYa, pTaLHYb, and pTaLHYd had transcriptional activity in wheat protoplasts. All three promoters have W-Box, which can bind to WRKY TFs. Using virus-induced gene silencing (VIGS), after silencing TaWRKY10, the resistance of ChuanNong 19 (CN19) to stripe rust pathogen strain CYR32 was lost, and the expression level of the TaLHY homologous gene decreased. At the same time, in wheat protoplasts, the transcriptional activity of TaLHY homologous promoters improved after TaWRKY10 overexpression. This indicates that TaWRKY10 is a key gene for wheat immune response to stripe rust, and this gene may bind to TaLHYa, TaLHYb, and TaLHYd promoters to regulate the expression of TaLHY.


Assuntos
Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Basidiomycota/patogenicidade , Resistência à Doença/genética , Resistência à Doença/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética
16.
Chemosphere ; 283: 131031, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34134043

RESUMO

Photosynthetic bacteria have flexible metabolisms and strong environmental adaptability, and require cheap, but plentiful, energy supplements, which all enable their use in Cr(VI)-remediation. In this study, the effects of culture conditions on the total Cr removal rate were investigated for a newly identified strain of Rhodobacter sphaeroides SC01. The subcellular distribution and Cr(VI) reduction ability of four different cellular fractions were evaluated by scanning electron microscopy and transmission electron microscopy. Experiments indicated that the optimal culture conditions for total Cr removal included a culture temperature of 35 °C, pH of 7.20, an NaCl concentration of 5 g L-1, a light intensity of 4000 lx, and an initial cell concentration (OD680) of 0.15. In addition, most Cr was found in the cell membrane in the form of Cr (III) after reduction, while cell membranes had the highest Cr(VI) reduction rate (99%) compared to other cellular components. In addition, the physical and chemical properties of SC01 cells were characterized by FTIR, XPS, and XRD analyses, confirming that Cr was successfully absorbed on bacterial cell surfaces. CrPO4‧6H2O and Cr5(P3O10)3 precipitates were particularly identified by XRD analysis. After screening supplementation with five phosphor salts, Cr(VI) reduction due to bioprecipitation was improved by the addition of Na4P2O7 and (NaPO3)6 salts, with the Cr(VI)-reduction rate combined with Na4P2O7 addition being 15% higher than that of the control. Thus, this study proposes a new Cr(VI)-removal strategy based on the combined use of photosynthetic bacteria and phosphor salts, which importantly increases its potential application in treating wastewater.


Assuntos
Cromo , Poluentes Químicos da Água , Bactérias , Cromo/análise , Suplementos Nutricionais , Concentração de Íons de Hidrogênio , Sais , Águas Residuárias
17.
Front Plant Sci ; 12: 800913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095972

RESUMO

After nitrogen treatments, plant leaves become narrower and thicker, and the chlorophyll content increases. However, the molecular mechanisms behind these regulations remain unknown. Here, we found that the changes in leaf width and thickness were largely compromised in the shade avoidance 3 (sav3) mutant. The SAV3 gene encodes an amino-transferase in the auxin biosynthesis pathway. Thus, the crosstalk between shade and nitrogen in Arabidopsis leaf development was investigated. Both hypocotyl elongation and leaf expansion promoted by the shade treatment were reduced by the high-N treatment; high-N-induced leaf narrowing and thickening were reduced by the shade treatment; and all of these developmental changes were largely compromised in the sav3 mutant. Shade treatment promoted SAV3 expression, while high-N treatment repressed SAV3 expression, which then increased or decreased auxin accumulation in cotyledons/leaves, respectively. SAV3 also regulates chlorophyll accumulation and nitrogen assimilation and thus may function as a master switch responsive to multiple environmental stimuli.

18.
Plants (Basel) ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709100

RESUMO

Oilseed rape (Brassica napus) is a Cadmium (Cd) hyperaccumulator. However, high-level Cd at the early seedling stage seriously arrests the growth of rape, which limits its applications. Brassica juncea had higher Cd accumulation capacity, but its biomass was lower, also limiting its applications. Previous studies have confirmed that Selenium (Se) can alleviate Cd toxicity. However, the regulatory mechanism of Se in different valence states of Cd accumulation was unclear. In this study, we investigated the ameliorating effects of three Se valence states, Na2SeO4 [Se(VI)], Na2SeO3 [Se(IV)] and Se-Met [Se(II)], to Cd toxicity by physiological and biochemical approaches in hydroponically-cultured Brassica juncea and Brassica napus seedlings. Although Se treatments slightly inhibited seedling Cd concentration, it tripled or quadrupled the Cd accumulation level per plant, because dry weight increased about four times more with Se and Cd application than with Cd treatment alone. Among the different valence states of Se, Se(II) had the most marked effect on reducing Cd toxicity as evidenced by decreased growth inhibition and Cd content. The application of Se(II) was effective in reducing Cd-induced reactive oxygen species accumulation, and promoted the antioxidant enzyme activity and photosynthesis of both Brassica species. In addition, Se(II) treatment increased the concentrations of Cd in the cell wall and soluble fractions, but the Cd concentration in the organelle part was reduced.

19.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059402

RESUMO

Salicylic acid (SA) is considered to play an important role in plant responses to environmental stresses. However, the detailed protective mechanisms in photosynthesis are still unclear. We therefore explored the protective roles of SA in photosystem II (PSII) in Arabidopsis thaliana under high light. The results demonstrated that 3 h of high light exposure resulted in a decline in photochemical efficiency and the dissipation of excess excitation energy. However, SA application significantly improved the photosynthetic capacity and the dissipation of excitation energy under high light. Western blot analysis revealed that SA application alleviated the decrease in the levels of D1 and D2 protein and increased the amount of Lhcb5 and PsbS protein under high light. Results from photoinhibition highlighted that SA application could accelerate the repair of D1 protein. Furthermore, the phosphorylated levels of D1 and D2 proteins were significantly increased under high light in the presence of SA. In addition, we found that SA application significantly alleviated the disassembly of PSII-LHCII super complexes and LHCII under high light for 3 h. Overall, our findings demonstrated that SA may efficiently alleviate photoinhibition and improve photoprotection by dissipating excess excitation energy, enhancing the phosphorylation of PSII reaction center proteins, and preventing the disassembly of PSII super complexes.


Assuntos
Arabidopsis/metabolismo , Luz/efeitos adversos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Substâncias Protetoras/farmacologia , Ácido Salicílico/farmacologia , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Cloroplastos/ultraestrutura , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteína do Fotossistema I , Substâncias Protetoras/metabolismo , Proteínas Quinases/metabolismo , Ácido Salicílico/metabolismo , Tilacoides/metabolismo
20.
Chemosphere ; 243: 125166, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31756653

RESUMO

Microorganisms and microbial products can be highly efficient in uptaking soluble and particulate forms of heavy metals, particularly from solutions. In this study, the removal efficiency, oxidative damage, antioxidant system, and the possible removal mechanisms were investigated in Rhodobacter (R.) sphaeroides SC01 under mercury (Hg), lead (Pb) and cadmium (Cd) stress. The results showed that SC01 had the highest removal rates (98%) of Pb among three heavy metals. Compared with Hg and Cd stress, Pb stress resulted in a lower levels of reactive oxygen species (ROS) and cell death. In contrast, the activities of four antioxidant enzymes in SC01 under Pb stress was higher than that of Hg and Cd stress. Furthermore, the analysis from fourier transform infrared spectroscopy indicated that complexation of Pb with hydroxyl, amid and phosphate groups was found in SC01 under Pb stress. In addition, X-ray diffraction analysis showed that precipitate of lead phosphate hydroxide was produced on the cell surface in SC01 exposed to Pb stress. Therefore, these results suggested that SC01 had good Pb removal ability by biosorption and precipitation and will be potentially useful for removal of Pb in industrial effluents.


Assuntos
Biodegradação Ambiental , Metais Pesados/metabolismo , Rhodobacter sphaeroides/metabolismo , Poluentes Químicos da Água/metabolismo , Cádmio/metabolismo , Chumbo/metabolismo , Mercúrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA