Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693121

RESUMO

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Assuntos
Dieta Hiperlipídica , Galectina 3 , Secreção de Insulina , Células Secretoras de Insulina , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Phytomedicine ; 129: 155686, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38759346

RESUMO

BACKGROUND: Tourette syndrome (TS) represents a neurodevelopmental disorder characterized by an uncertain etiology and influencing factors. Frequently, it co-occurs with conditions such as attention deficit hyperactivity disorder, obsessive-compulsive disorder, and sleep disturbances, which have garnered substantial attention from the research community in recent years. Clinical trials have demonstrated that Shaoma Zhijing Granules (SMZJG, 5-ling granule, also known as TSupport or T92 under U.S. development), a traditional Chinese medicine compound, is an effective treatment for TS. PURPOSE: To conduct scientometric analysis on developing trends, research countries and institutions, current status, hot spots of TS and discuss the underlying mechanisms of SMZJG and its main components on TS. The aim is to provide valuable reference for ongoing clinical and basic research on TS and SMZJG. STUDY DESIGN & METHODS: Using Tourette syndrome, SMZJG and its main components along with their synonyms as keywords, we conducted a comprehensive search across major scientific databases including the Web of Science Core Collection, PubMed and China National Knowledge Infrastructure (CNKI) databases. A total of 5952 references and 99 patents were obtained. Among these, 5039 articles and reviews, as well as 54 patents were analyzed by Citespace and VOSviewer software. RESULTS: The available evidence indicates that the SMZJG's components likely exert their mechanisms in treating TS by regulating the dopaminergic pathway system, neurotransmitter imbalances, reducing neuroinflammation, promoting the repair of nerve damage and improving sleep disorders. CONCLUSION: This comprehensive analysis lays the foundation for an extensive exploration of the feasibility and clinical applications of SMZJG in TS treatment.

3.
Apoptosis ; 29(5-6): 663-680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598070

RESUMO

Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.


Assuntos
Caquexia , Proteína Forkhead Box O3 , Terapia com Luz de Baixa Intensidade , Atrofia Muscular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/genética , Caquexia/patologia , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Camundongos , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Humanos , Neoplasias/radioterapia , Neoplasias/complicações , Neoplasias/metabolismo , Masculino , Linhagem Celular Tumoral , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
PLoS Genet ; 20(4): e1011235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648200

RESUMO

Tumor-associated macrophages (TAM) subtypes have been shown to impact cancer prognosis and resistance to immunotherapy. However, there is still a lack of systematic investigation into their molecular characteristics and clinical relevance in different cancer types. Single-cell RNA sequencing data from three different tumor types were used to cluster and type macrophages. Functional analysis and communication of TAM subpopulations were performed by Gene Ontology-Biological Process and CellChat respectively. Differential expression of characteristic genes in subpopulations was calculated using zscore as well as edgeR and Wilcoxon rank sum tests, and subsequently gene enrichment analysis of characteristic genes and anti-PD-1 resistance was performed by the REACTOME database. We revealed the heterogeneity of TAM, and identified eleven subtypes and their impact on prognosis. These subtypes expressed different molecular functions respectively, such as being involved in T cell activation, apoptosis and differentiation, or regulating viral bioprocesses or responses to viruses. The SPP1 pathway was identified as a critical mediator of communication between TAM subpopulations, as well as between TAM and epithelial cells. Macrophages with high expression of SPP1 resulted in poorer survival. By in vitro study, we showed SPP1 mediated the interactions between TAM clusters and between TAM and tumor cells. SPP1 promoted the tumor-promoting ability of TAM, and increased PDL1 expression and stemness of tumor cells. Inhibition of SPP1 attenuated N-cadherin and ß-catenin expression and the activation of AKT and STAT3 pathway in tumor cells. Additionally, we found that several subpopulations could decrease the sensitivity of anti-PD-1 therapy in melanoma. SPP1 signal was a critical pathway of communication between macrophage subtypes. Some specific macrophage subtypes were associated with immunotherapy resistance and prognosis in some cancer types.


Assuntos
Neoplasias , Osteopontina , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Prognóstico , Neoplasias/imunologia , Neoplasias/genética , Osteopontina/genética , Osteopontina/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Análise de Célula Única , Transdução de Sinais , Macrófagos/imunologia , Macrófagos/metabolismo , Comunicação Celular/imunologia
5.
Nat Commun ; 15(1): 2526, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514666

RESUMO

ß-Cell dysfunction and ß-cell loss are hallmarks of type 2 diabetes (T2D). Here, we found that trimethylamine N-oxide (TMAO) at a similar concentration to that found in diabetes could directly decrease glucose-stimulated insulin secretion (GSIS) in MIN6 cells and primary islets from mice or humans. Elevation of TMAO levels impairs GSIS, ß-cell proportion, and glucose tolerance in male C57BL/6 J mice. TMAO inhibits calcium transients through NLRP3 inflammasome-related cytokines and induced Serca2 loss, and a Serca2 agonist reversed the effect of TMAO on ß-cell function in vitro and in vivo. Additionally, long-term TMAO exposure promotes ß-cell ER stress, dedifferentiation, and apoptosis and inhibits ß-cell transcriptional identity. Inhibition of TMAO production improves ß-cell GSIS, ß-cell proportion, and glucose tolerance in both male db/db and choline diet-fed mice. These observations identify a role for TMAO in ß-cell dysfunction and maintenance, and inhibition of TMAO could be an approach for the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glucose/farmacologia , Metilaminas/farmacologia , Transdução de Sinais , Insulina/farmacologia
6.
Int J Pharm ; 649: 123625, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984618

RESUMO

Pulmonary fibrosis is a chronic and progressive disease, current systemic administration is not fully effective with many side effects, such as gastrointestinal and liver injury. The pulmonary delivery system for pulmonary fibrosis may contribute to maximize therapeutic benefit. Natural compounds might have prominence as potential drug candidates, but the low bioavailabilities affect their clinical use. Tetrandrine is a natural alkaloid with good anti-inflammatory, antifibrogenetic and antioxidant effects, and it is used as a clinical therapeutic drug for the treatment of silicosis in China. In the present study, we explore a new strategy of pulmonary delivery system to improve low solubility and pesticide effect of tetrandrine. Tetrandrine was loaded into alginate nanogels by reverse microemulsion method. The release behavior of tetrandrine reached zero-order kinetics release and the maximum free radical clearance rates reached up to 90%. The pulmonary fibrosis rats were treated with tetrandrine nanogels by using ultrasonic atomizing inhalation. Tetrandrine nanogels decreased the development and progression of fibrosis by reducing inflammation response and bating the deposition of extra cellular matrix. In conclusion, ultrasonic atomizing inhalation of tetrandrine nanogels provided a new therapeutic strategy for pulmonary fibrosis.


Assuntos
Benzilisoquinolinas , Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/tratamento farmacológico , Nanogéis , Zinco , Alginatos
7.
Biomed Eng Online ; 22(1): 105, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919731

RESUMO

BACKGROUND AND OBJECTIVES: This study focused on changes in intestinal motility during different sleep stages based on long-term bowel sounds. METHODS: A modified higher order statistics algorithm was devised to identify the effective bowel sound segments. Next, characteristic values (CVs) were extracted from each bowel sound segment, which included 4 time-domain, 4 frequency-domain and 2 nonlinear CVs. The statistical analysis of these CVs corresponding to the different sleep stages could be used to evaluate the changes in intestinal motility during sleep. RESULTS: A total of 6865.81 min of data were recorded from 14 participants, including both polysomnographic data and bowel sound data which were recorded simultaneously from each participant. The average accuracy, sensitivity and specificity of the modified higher order statistics detector were 96.46 ± 2.60%, 97.24 ± 2.99% and 94.13 ± 4.37%. In addition, 217088 segments of effective bowel sound corresponding to different sleep stages were identified using the modified detector. Most of the CVs were statistically different during different sleep stages ([Formula: see text]). Furthermore, the bowel sounds were low in frequency based on frequency-domain CVs, high in energy based on time-domain CVs and low in complexity base on nonlinear CVs during deep sleep, which was consistent with the state of the EEG signals during deep sleep. CONCLUSIONS: The intestinal motility varies by different sleep stages based on long-term bowel sounds using the modified higher order statistics detector. The study indicates that the long-term bowel sounds can well reflect intestinal motility during sleep. This study also demonstrates that it is technically feasible to simultaneously record intestinal motility and sleep state throughout the night. This offers great potential for future studies investigating intestinal motility during sleep and related clinical applications.


Assuntos
Motilidade Gastrointestinal , Fases do Sono , Humanos , Algoritmos
8.
J Nanobiotechnology ; 21(1): 379, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848975

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) with neuronic development and function is a promising therapeutic agent for treating depressive disorder, according to the neurotrophin hypothesis. However, the delivery of BDNF into the brain is not easy as these large protein molecules cannot efficiently cross the blood-brain barrier (BBB) and easily suffer oxidative damage in vivo. Therefore, the quercetin-based alginate nanogels (quercetin nanogels) loaded with BDNF have been developed, which could efficiently bypass the BBB via the nose-to-brain pathway and protect BDNF from oxidative damage, providing an effective route for the therapy of depressive disorders by intranasal delivery. RESULTS: Quercetin nanogels exhibited uniform size distribution, excellent biocompatibility, and potent antioxidant and anti-inflammatory activities. Quercetin nanogels in the thermosensitive gel achieved sustained and controlled release of BDNF with non-Fick's diffusion, exhibited rapid brain distribution, and achieved nearly 50-fold enhanced bioavailability compared to oral quercetin. Quercetin nanogels as a therapeutic drug delivery carrier exerted antidepressant effects on reserpine-induced rats, effectively delivered BDNF to reverse despair behavior in stress-induced mice, and exhibited antidepressant effects on chronic mild unpredictable stimulation (CUMS) rats. These antidepressant effects of BDNF-Quercetin nanogels for CUMS rats are associated with the regulation of the glutamatergic system, PI3K-Akt, and BDNF-TrkB signaling pathway. CONCLUSIONS: In this study, we provide a promising strategy for brain delivery of BDNF for treating depressive disorders, effectively achieved through combining quercetin nanogels and intranasal administration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Quercetina , Ratos , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Nanogéis , Alginatos , Fosfatidilinositol 3-Quinases/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo , Modelos Animais de Doenças
9.
Acta Pharm Sin B ; 13(6): 2645-2662, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425043

RESUMO

Induction of cancer cell ferroptosis has been proposed as a potential treatment in several cancer types. Tumor-associated macrophages (TAMs) play a key role in promoting tumor malignant progression and therapy resistance. However, the roles and mechanisms of TAMs in regulating tumor ferroptosis is still unexplored and remains enigmatic. This study shows ferroptosis inducers has shown therapeutic outcomes in cervical cancer in vitro and in vivo. TAMs have been found to suppress cervical cancer cells ferroptosis. Mechanistically, macrophage-derived miRNA-660-5p packaged into exosomes are transported into cancer cells. In cancer cells, miRNA-660-5p attenuates ALOX15 expression to inhibit ferroptosis. Moreover, the upregulation of miRNA-660-5p in macrophages depends on autocrine IL4/IL13-activated STAT6 pathway. Importantly, in clinical cervical cancer cases, ALOX15 is negatively associated with macrophages infiltration, which also raises the possibility that macrophages reduce ALOX15 levels in cervical cancer. Moreover, both univariate and multivariate Cox analyses show ALOX15 expression is independent prognostic factor and positively associated with good prognosis in cervical cancer. Altogether, this study reveals the potential utility of targeting TAMs in ferroptosis-based treatment and ALOX15 as prognosis indicators for cervical cancer.

10.
Magn Reson Imaging ; 103: 54-60, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37442303

RESUMO

BACKGROUND AND OBJECTIVES: In diffuse glioma patients, Lys-27-Met mutations in histone 3 genes (H3K27M) are associated with an aggravated prognosis and further decreased overall survival. By using frequency importance analysis on chemical exchange saturation transfer (CEST) MRI, this study aimed to assess the predictability of the H3K27M status in diffuse glioma patients. METHODS: Twenty-two patients diagnosed with diffuse glioma, with a known H3K27M status, were included in the present study. All patients underwent CEST MRI scans. The previously proposed frequency importance analysis was performed to determine the relative contribution of the amide and aliphatic protons for the differentiation between normal tissues and tumors. For this comparison, the conventional MTRasym analysis of amide protons at 3.5 ppm, i.e., the amide proton transfer-weighted (APTw) signal, was employed. Statistical analysis was performed using the Mann-Whitney U test, and the receiver operating characteristic (ROC) and area under the curve (AUC) analyses. RESULTS: The mean and 90th percentile of the ΔAPTw intensities, amide and aliphatic frequency importance values revealed statistically significant differences between the wildtype and the H3K27M-altered patient groups (p < 0.05). For the prediction of the H3K27M status, amide frequency importance achieved highest AUCs of 0.97, with a specificity of 0.93. In contrast, the ΔAPTw intensities and aliphatic frequency importance showed relatively lower AUCs (<0.35) in predicting the H3K27M status. CONCLUSIONS: Amide frequency importance exhibited satisfactory performance in the prediction of the H3K27M status. As such, it may be considered as a non-invasive MRI biomarker for the diagnosis of diffuse gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patologia , Prótons , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento por Ressonância Magnética , Amidas
11.
Front Pediatr ; 11: 1161502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476031

RESUMO

Background: Dyschromatosis symmetrica hereditaria (DSH) is a rare autosomal dominant inherited pigmentary dermatosis characterized by a mixture of hyperpigmented and hypopigmented freckles on the dorsal aspect of the distal extremities. To date, pathogenic mutations causing DSH have been identified in the adenosine deaminase acting on RNA1 gene (ADAR1), which is mapped to chromosome 1q21. Objective: The present study aimed to investigate the underlying pathological mechanism in 14 patients with DSH from five unrelated Chinese families. Next-generation sequencing (NGS) and direct sequencing were performed on a proband with DSH to identify causative mutations. All coding, adjacent intronic, and 5'- and 3'-untranslated regions of ADAR1 were screened, and variants were identified. Result: These mutations consisted of three missense mutations (NM_001025107: c.716G>A, NM_001111.5: c.3384G>C, and NM_001111.5: c.3385T>G), one nonsense mutation (NM_001111.5:c.511G>T), and one splice-site mutation (NM_001111.5: c.2080-1G>T) located in exon 2, exon 14, and the adjacent intronic region according to recommended Human Genome Variation Society (HGVS) nomenclature. Moreover, using polymerase chain reaction and Sanger sequencing, we identified five novel ADAR1 variants, which can be predicted to be pathogenic by in silico genome sequence analysis. Among the mutations, the missense mutations had no significant effect on the spatial structure of the protein, while the stop codon introduced by the nonsense mutation truncated the protein. Conclusion: Our results highlighted that the advent of NGS has facilitated high-throughput screening for the identification of disease-causing mutations with high accuracy, stability, and specificity. Five novel genetic mutations were found in five unrelated families, thereby extending the pathogenic mutational spectrum of ADAR1 in DSH and providing new insights into this complex genetic disorder.

12.
Pharmgenomics Pers Med ; 16: 551-568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293607

RESUMO

Background: It was indicated that tumor intrinsic heterogeneity and the tumor microenvironment (TME) of ovarian cancer (OV) influence immunotherapy efficacy and patient outcomes. Leucyl and cystinyl aminopeptidase (LNPEP) encodes a zinc-dependent aminopeptidase, which has been proved to participant in the vesicle-mediated transport and class I MHC mediated antigen processing and presentation. However, the function of LNPEP in TME of OV and its potential molecular mechanisms have not been determined. Therefore, we aimed to investigate a prognostic biomarker which may be helpful in identifying TME heterogeneity of ovarian cancer. Methods: In this study, bioinformatics databases were used to explore the expression profile and immune infiltration of LNPEP. Bioinformatics analyses of survival data and interactors of LNPEP were conducted to predict the prognostic value of LNPEP in OV. The protein levels of LNPEP were validated by Western blot and immunohistochemistry. Results: Based on the TCGA data, our data displayed that the mRNA expression of LNPEP was markedly down-regulated in ovarian cancer than that in para-cancer tissues, contrary to the protein level. Importantly, high LNPEP expression was associated with poor prognosis in patients with OV. Furthermore, Cox regression analysis showed that LNPEP was an independent prognostic factor in OV. GO and KEGG pathway analyses indicated the co-expressed genes of LNPEP were mainly related to a variety of immune-related pathways, including Th1 and Th2 cell differentiation, Th17 cell differentiation, and immunoregulatory interaction. Our data also demonstrated that the expression of LNPEP was strongly correlated with immune infiltration levels, immunomodulators, chemokines and chemokine receptors. Conclusion: In our study, we identified and established a prognostic signature of immune-related LNPEP in OV, which will be of great value in predicting the prognosis of clinical trials and may become a new therapeutic target for immunological research and potential prognostic biomarker in OV.

13.
Front Physiol ; 14: 1153166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250129

RESUMO

Introduction: We aimed to identify urine biomarkers for screening individuals with adaptability to high-altitude hypoxia with high stamina levels. Although most non-high-altitude natives experience rapid decline in physical ability when ascending to high altitudes, some individuals with high-altitude adaptability continue to maintain high endurance levels. Methods: We divided the study population into two groups: the LC group (low change in endurance from low to high altitude) and HC group (high change in endurance from low to high altitude). We performed blood biochemistry testing for individuals at high altitudes and sea level. We used urine peptidome profiling to compare the HH (high-altitude with high stamina) and HL (high-altitude with low stamina) groups and the LC and HC groups to identify urine biomarkers. Results: Routine blood tests revealed that the concentration of white blood cells, lymphocytes and platelets were significantly higher in the HH group than in the HL group. Urine peptidome profiling showed that the proteins ITIH1, PDCD1LG2, NME1-NME2, and CSPG4 were significantly differentially expressed between the HH and HL groups, which was tested using ELISA. Urine proteomic analysis showed that LRG1, NID1, VASN, GPX3, ACP2, and PRSS8 were urine proteomic biomarkers of high stamina during high-altitude adaptation. Conclusion: This study provides a novel approach for identifying potential biomarkers for screening individuals who can adapt to high altitudes with high stamina.

14.
J Biomed Sci ; 30(1): 8, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707854

RESUMO

Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Transdução de Sinais , Progressão da Doença , Hormônios/farmacologia , Microambiente Tumoral
15.
Metabolism ; 144: 155376, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36521551

RESUMO

BACKGROUND: Renal interstitial fibrosis (RIF) is one of the main features of diabetic nephropathy (DN), but the molecular mechanisms mediating RIF in DN has yet been fully understood. S100A8 and S100A9 are the proteins associated with immune and inflammation response. Here we reported the expression of S100A8 and S100A9 were significantly increased on tubular epithelial cells in diabetic kidneys through a proteomic analysis. METHODS: We detected the expression of S100A8/A9 in diabetic kidneys by using immunoblotting, real-time PCR and immunostaining. RNA silencing and overexpression were performed by using S100A8/A9 expression/knockdown lentivirus to investigate the connection between S100A8/A9 and epithelial to mesenchymal transition (EMT) process. We also identify the expression of TLR4/NFκB pathway-related molecules in the case mentioned above. Afterwards a CO-IP assay was used to verify that compound AB38b ameliorates the EMT by interfering S100A8/A9 expression. RESULTS: The expression of S100A8 and S100A9 were significantly increased on tubular epithelial cells in diabetic kidneys. S100A8/A9 knocking-down alleviate and over-expression promote the renal interstitial fibrosis of diabetic mice. Mechanically, high levels of S100A8/A9 expression in tubular epithelial cells during diabetic condition activated the TLR4/NF-κB signal pathway which promoted the EMT process and finally led to RIF progression. S100A8/A9 knockdown ameliorated RIF of diabetic mice. Further experiments revealed that compound AB38b inhibited the EMT progression of tubular epithelial cells induced by S100A8/A9 through interfering the expressions of S100A8/A9. CONCLUSIONS: Our study suggest that abnormal expression of S100A8/A9 in the disease condition promotes EMT process and RIF through TLR4/NF-κB signal pathway. Using small molecular inhibitor AB38b to inhibit the abnormal expressions of S100A8/A9 might be a novel therapeutic strategy in treating DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Transição Epitelial-Mesenquimal , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteômica , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Fibrose
16.
Int J Cardiol ; 375: 44-54, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36414043

RESUMO

BACKGROUND: Heart failure (HF) is a complex pathophysiological state characterized by inadequate delivery of blood and nutrients to the cardiac tissues. It is rarely curable and is commonly associated with a poor prognosis. In this study, we aimed to analyse exomic and RNA-Seq data from patients with HF to identify the key altered pathways in HF. METHODS: Whole blood samples were collected from patients with HF and subjected to whole exome sequencing (WES) and RNA-Seq analysis. The gene expression and RNA-Seq data obtained were verified using gene chip analysis and RT-PCR. RESULTS: Both exomic and RNA-Seq data confirmed the dysregulation of phosphorylation and immune signalling in patients with HF. Specifically, exomic analysis showed that TITIN, OBSCURIN, NOD2, CDH2, MAP3K5, and SLC17A4 mutations were associated with HF, and RNA-Seq revealed that S100A12, S100A8, S100A9, PFDN5, and TMCC2, were upregulated in patients with HF. Additionally, comparison between RNA-seq and WES data showed that OAS1 mutations are associated with HF. CONLCUSION: Our findings indicated that patients with HF show an overall disruption of key phosphorylation and immune signalling pathways. Based on RNA-seq and WES, OAS1 mutations may be primarily responsible for these changes.


Assuntos
Insuficiência Cardíaca , Humanos , RNA-Seq , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Sequenciamento do Exoma , Volume Sistólico , Genômica , Mutação/genética , Perfilação da Expressão Gênica , 2',5'-Oligoadenilato Sintetase
17.
Apoptosis ; 28(1-2): 81-107, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399287

RESUMO

It has been 10 years since the concept of ferroptosis was put forward and research focusing on ferroptosis has been increasing continuously. Ferroptosis is driven by iron-dependent lipid peroxidation, which can be antagonized by glutathione peroxidase 4 (GPX4), ferroptosis inhibitory protein 1 (FSP1), dihydroorotate dehydrogenase (DHODH) and Fas-associated factor 1 (FAF1). Various cellular metabolic events, including lipid metabolism, can modulate ferroptosis sensitivity. It is worth noting that the reprogramming of lipid metabolism in cancer cells can promote the occurrence and development of tumors. The metabolic flexibility of cancer cells opens the possibility for the coordinated targeting of multiple lipid metabolic pathways to trigger cancer cells ferroptosis. In addition, cancer cells must obtain immortality, escape from programmed cell death including ferroptosis, to promote cancer progression, which provides new perspectives for improving cancer therapy. Targeting the vulnerability of ferroptosis has received attention as one of the significant possible strategies to treat cancer given its role in regulating tumor cell survival. We review the impact of iron and lipid metabolism on ferroptosis and the potential role of the crosstalk of lipid metabolism reprogramming and ferroptosis in antitumor immunity and sum up agents targeting lipid metabolism and ferroptosis for cancer therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Apoptose , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Neoplasias/metabolismo , Ferro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
18.
Radiol Med ; 128(1): 68-80, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36574111

RESUMO

PURPOSE: To develop and validate a 3D-convolutional neural network (3D-CNN) model based on chest CT for differentiating active pulmonary tuberculosis (APTB) from community-acquired pneumonia (CAP). MATERIALS AND METHODS: Chest CT images of APTB and CAP patients diagnosed in two imaging centers (n = 432 in center A and n = 61 in center B) were collected retrospectively. The data in center A were divided into training, validation and internal test sets, and the data in center B were used as an external test set. A 3D-CNN was built using Keras deep learning framework. After the training, the 3D-CNN selected the model with the highest accuracy in the validation set as the optimal model, which was applied to the two test sets in centers A and B. In addition, the two test sets were independently diagnosed by two radiologists. The 3D-CNN optimal model was compared with the discrimination, calibration and net benefit of the two radiologists in differentiating APTB from CAP using chest CT images. RESULTS: The accuracy of the 3D-CNN optimal model was 0.989 and 0.934 with the internal and external test set, respectively. The area-under-the-curve values with the 3D-CNN model in the two test sets were statistically higher than that of the two radiologists (all P < 0.05), and there was a high calibration degree. The decision curve analysis showed that the 3D-CNN optimal model had significantly higher net benefit for patients than the two radiologists. CONCLUSIONS: 3D-CNN has high classification performance in differentiating APTB from CAP using chest CT images. The application of 3D-CNN provides a new automatic and rapid diagnosis method for identifying patients with APTB from CAP using chest CT images.


Assuntos
Pneumonia , Tuberculose Pulmonar , Humanos , Estudos Retrospectivos , Redes Neurais de Computação , Pneumonia/diagnóstico por imagem , Tuberculose Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
19.
NMR Biomed ; 36(6): e4744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434864

RESUMO

Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) is a promising molecular imaging tool that allows sensitive detection of endogenous metabolic changes. However, because the CEST spectrum does not display a clear peak like MR spectroscopy, its signal interpretation is challenging, especially under 3-T field strength or with a large saturation B1 . Herein, as an alternative to conventional Z-spectral fitting approaches, a permuted random forest (PRF) method is developed to determine featured saturation frequencies for lesion identification, so-called CEST frequency importance analysis. Briefly, voxels in the CEST dataset were labeled as lesion and control according to multicontrast MR images. Then, by considering each voxel's saturation signal series as a sample, a permutation importance algorithm was employed to rank the contribution of saturation frequency offsets in the differentiation of lesion and normal tissue. Simulations demonstrated that PRF could correctly determine the frequency offsets (3.5 or -3.5 ppm) for classifying two groups of Z-spectra, under a range of B0 , B1 conditions and sample sizes. For ischemic rat brains, PRF only displayed high feature importance around amide frequency at 2 h postischemia, reflecting that the pH changes occurred at an early stage. By contrast, the data acquired at 24 h postischemia exhibited high feature importance at multiple frequencies (amide, water, and lipids), which suggested the complex tissue changes that occur during the later stages. Finally, PRF was assessed using 3-T CEST data from four brain tumor patients. By defining the tumor region on amide proton transfer-weighted images, PRF analysis identified different CEST frequency importance for two types of tumors (glioblastoma and metastatic tumor) (p < 0.05, with each image slice as a subject). In conclusion, the PRF method was able to rank and interpret the contribution of all acquired saturation offsets to lesion identification; this may facilitate CEST analysis in clinical applications, and open up new doors for comprehensive CEST analysis tools other than model-based approaches.


Assuntos
Neoplasias Encefálicas , Algoritmo Florestas Aleatórias , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Prótons , Amidas
20.
Front Endocrinol (Lausanne) ; 13: 1032268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568097

RESUMO

Diabetic cardiomyopathy (DCM) is a pathophysiological condition of cardiac structure and function changes in diabetic patients without coronary artery disease, hypertension, and other types of heart diseases. DCM is not uncommon in people with diabetes, which increases the risk of heart failure. However, the treatment is scarce, and the prognosis is poor. Since 1972, one clinical study after another on DCM has been conducted. However, the complex phenotype of DCM still has not been fully revealed. This dilemma hinders the pace of understanding the essence of DCM and makes it difficult to carry out penetrating clinical or basic research. This review summarizes the literature on DCM over the last 40 years and discusses the overall perspective of DCM, phase of progression, potential clinical indicators, diagnostic and screening criteria, and related randomized controlled trials to understand DCM better.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Humanos , Cardiomiopatias Diabéticas/diagnóstico , Coração , Insuficiência Cardíaca/terapia , Fenótipo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA