Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Int J Part Ther ; 11: 100012, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38757082

RESUMO

Purpose: Evidence suggests that proton-beam therapy (PBT) results in less toxicity and postoperative complications compared to photon-based radiotherapy in patients who receive chemoradiotherapy followed by esophagectomy for cancer. Ninety-day mortality (90DM) is an important measure of the postoperative (nononcologic) outcome as proxy of quality-of-care. We hypothesize that PBT could reduce 90DM compared to photon-based radiotherapy. Materials and Methods: From a single-center retrospective database patients treated with chemoradiotherapy before esophagectomy for cancer were selected (1998-2022). Univariable logistic regression was used to study the association of radiotherapy modality with 90DM. Three separate methods were applied to adjust for confounding bias, including multivariable logistic regression, propensity score matching, and inverse probability of treatment weighting. Stratified analysis for the age threshold that maximized the difference in 90DM (ie, ≥67 vs <67 years) was performed. Results: A total of 894 eligible patients were included and 90DM was 5/202 (2.5%) in the PBT versus 29/692 (4.2%) in the photon-based radiotherapy group (P = .262). After adjustment for age and tumor location, PBT versus photon-based radiotherapy was not significantly associated with 90DM (P = .491). The 90DM was not significantly different for PBT versus photon-based radiotherapy in the propensity score matching (P = .379) and inverse probability of treatment weighting cohort (P = .426). The stratified analysis revealed that in patients aged ≥67 years, PBT was associated with decreased 90DM (1.3% vs 8.8%; P = .026). Higher age significantly increased 90DM risk within the photon-based radiotherapy (8.8% vs 2.7%; P = .001), but not within the PBT group (1.3% vs 3.2%; P = .651). Conclusion: No statistically significant difference was observed in postoperative 90DM after esophagectomy for cancer between PBT and photon-based neoadjuvant chemoradiotherapy. However, among older patients a signal was observed that PBT may reduce 90DM risk.

2.
Inhal Toxicol ; : 1-10, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776440

RESUMO

OBJECTIVE: PM2.5 is closely linked to vascular endothelial injury and has emerged as a major threat to human health. Our previous research indicated that exposure to PM2.5 induced an increased release of miR-421 from the bronchial epithelium. However, the role of miR-421 in PM2.5-induced endothelial injury remains elusive. MATERIALS AND METHODS: We utilized a subacute PM2.5-exposure model in mice in vivo and an acute injury cell model in vitro to simulate PM2.5-associated endothelial injury. We also used quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and immunohistochemistry to investigate the role of miR-421 in PM2.5-induced endothelial injury. RESULTS: Our findings reveal that inhibition of miR-421 attenuated PM2.5-induced endothelial injury and hypertension. Mechanistically, miR-421 inhibited the expression of angiotensin-converting enzyme 2 (ACE2) in human umbilical vein endothelial cells and upregulated the expression of the downstream molecule inducible nitric oxide synthase (iNOS), thereby exacerbating PM2.5-induced endothelial injury. CONCLUSIONS: Our results indicate that PM2.5 exposure facilitates crosstalk between bronchial epithelial and endothelial cells via miR-421/ACE2/iNOS signaling pathway, mediating endothelial damage and hypertension. MiR-421 inhibition may offer a new strategy for the prevention and treatment of PM2.5-induced vascular endothelial injury.

3.
EClinicalMedicine ; 71: 102581, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38618207

RESUMO

Background: Antipsychotics and mood stabilisers are gathering attention for the disturbance of metabolism. This network meta-analysis aims to evaluate and rank the metabolic effects of the commonly used antipsychotics and mood stabilisers in treating bipolar disorder (BD). Methods: Registries including PubMed, Embase, Cochrane Library, Web of Science, Ovid, and Google Scholar were searched before February 15th, 2024, for randomised controlled trials (RCTs) applying antipsychotics or mood stabilisers for BD treatment. The observed outcomes were twelve metabolic indicators. The data were extracted by two reviewers independently, and confirmed by another four reviewers and a corresponding author. The above six reviewers all participated in data analyses. Data extraction was based on PRISMA guidelines, and quality assessment was conducted according to the Cochrane Handbook. Use a random effects model for data pooling. The PROSPERO registration number is CRD42023466669. Findings: Together, 5421 records were identified, and 41 publications with 11,678 complete-trial participants were confirmed eligible. After eliminating possible sensitivity, risperidone ranked 1st in elevating fasting serum glucose (SUCRA = 90.7%) and serum insulin (SUCRA = 96.6%). Lurasidone was most likely to elevate HbA1c (SUCRA = 82.1%). Olanzapine ranked 1st in elevating serum TC (SUCRA = 93.3%), TG (SUCRA = 89.6%), and LDL (SUCRA = 94.7%). Lamotrigine ranked 1st in reducing HDL (SUCRA = 82.6%). Amisulpride ranked 1st in elevating body weight (SUCRA = 100.0%). For subgroup analyses, quetiapine is more likely to affect indicators of glucose metabolism among male adult patients with bipolar mania, while long-term lurasidone tended to affect glucose metabolism among female patients with bipolar depression. Among patients under 18, divalproex tended to affect glucose metabolism, with lithium affecting lipid metabolism. In addition, most observed antipsychotics performed higher response and remission rates than placebo, and displayed a similar dropout rate with placebo, while no between-group significance of rate was observed among mood stabilisers. Interpretation: Our findings suggest that overall, antipsychotics are effective in treating BD, while they are also more likely to disturb metabolism than mood stabilisers. Attention should be paid to individual applicability in clinical practice. The results put forward evidence-based information and clinical inspiration for drug compatibility and further research of the BD mechanism. Funding: The National Key Research and Development Program of China (2023YFC2506200), and the Research Project of Jinan Microecological Biomedicine Shandong Laboratory (No. JNL-2023001B).

4.
Micromachines (Basel) ; 15(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675353

RESUMO

The heterogeneity of circulating tumor cells has a significant impact on the diagnosis, treatment, and monitoring of cancer. Research on the subtypes of circulating tumor cells can bring better treatment outcomes for cancer patients. Here, we proposed a microfluidic chip for the magnetic capture of subtypes of circulating tumor cells from the whole blood and phenotypic profiling by stacking laminar flow vertically. Circulating tumor cells were sorted and captured by the three-dimensional regulation of both magnetic fields in the vertical direction and flow fields in the lateral direction. Using EpCAM-magnetic beads, we achieved sorting and sectional capture of target cells in whole blood and analyzed the surface expression levels of the captured cells, confirming the functionality of the microfluidic chip in sorting and capturing subtypes of circulating tumor cells. This microfluidic chip can also aid in the subsequent subtype analysis of other rare cells.

5.
Dalton Trans ; 53(19): 8356-8368, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38669078

RESUMO

To date, it is urgent to produce perovskite films with comparative or even better morphologies in an open-air environment. Unfortunately, a substantial number of trap states on the grain surface, especially the grain boundaries (GBs) of a perovskite layer, can bring about significant deterioration in the performance of PSCs. Trap-induced carrier recombination directly exerts a detrimental influence on the carrier collection efficiency and electronic properties of a perovskite active film. Herein, 4(5)-iodoimidazole (4II), a small organic molecule agent, was introduced to passivate the surface and bulk traps of the active film, which resulted in a controlled morphology, improved carrier extraction and suppressed ion migration for the devices fabricated in a relatively humid and O2-containing environment. Conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM) measurements were applied to study trap passivation and suppression of ion migration across the GBs of perovskite films. The results manifest that the -CN group preferably bonds with the less-coordinated Pb2+ and the -NH- group favorably forms hydrogen bonds with the uncoordinated I-. As a result, the champion device delivered a significantly boosted power conversion efficiency from 17.22% to 20.95%, with an improved fill factor (FF) from 70.54% to 80.40%, and improved ambient stability of the unencapsulated device. This study may probe research insight into the design of passivators with synergistic effects for morphology control and reduction of carrier recombination loss for equally efficient perovskite photovoltaics fabricated in ambient air.

6.
J Am Chem Soc ; 146(12): 8641-8649, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470826

RESUMO

Renewable-energy-powered electrosynthesis has the potential to contribute to decarbonizing the production of propylene glycol, a chemical that is used currently in the manufacture of polyesters and antifreeze and has a high carbon intensity. Unfortunately, to date, the electrooxidation of propylene under ambient conditions has suffered from a wide product distribution, leading to a low faradic efficiency toward the desired propylene glycol. We undertook mechanistic investigations and found that the reconstruction of Pd to PdO occurs, followed by hydroxide formation under anodic bias. The formation of this metastable hydroxide layer arrests the progressive dissolution of Pd in a locally acidic environment, increases the activity, and steers the reaction pathway toward propylene glycol. Rh-doped Pd further improves propylene glycol selectivity. Density functional theory (DFT) suggests that the Rh dopant lowers the energy associated with the production of the final intermediate in propylene glycol formation and renders the desorption step spontaneous, a concept consistent with experimental studies. We report a 75% faradic efficiency toward propylene glycol maintained over 100 h of operation.

7.
ACS Appl Mater Interfaces ; 16(11): 14072-14081, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442356

RESUMO

Conventional luminescent solar concentrators (LSCs) usually only have the ability to absorb solar energy and convert it to electricity but are not able to regulate the transmitted light. Herein, a multistate thermoresponsive smart window (SW) based on LSC has been fabricated, in which the stimuli-responsive host layer consists of polydimethylsiloxane (PDMS) and ethylene glycol solution (EGS) microdroplets stacking with LSC layer-based on near-infrared (NIR) CuInSe2-xSx/ZnS core/shell quantum dots (QDs) and PDMS matrix. As-synthesized CISSe/ZnS QDs with broad NIR absorption in LSC exhibit controllable emission spectra over 833-1088 nm and high photoluminescence (PL) quantum yield from 45 to 83%. Coupling with Si solar cells as a reference, optimized LSC-SW devices with dimensions of 5 × 5 × 0.9 cm3 exhibit higher power conversion efficiency (PCE) of 1.19-1.36% with increased temperature from 0 to 50 °C than those of sole LSC and SW devices. The corresponding visible light transmissions are regulated from 75.1 to 48.1% accordingly. The improvement of PCEs in an opaque state is mainly due to enhanced absorption of QDs originating from rescattered photons from the EGS/PDMS layer, leading to more emitted photons reaching photovoltaics. This work is expected to bring up new opportunities for applications in greenhouses, building facades, and energy-efficient smart windows.

8.
Angew Chem Int Ed Engl ; 63(16): e202400011, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38409577

RESUMO

Light-driven hydrogen production from biomass derivatives offers a path towards carbon neutrality. It is often however operated with the limitations of sluggish kinetics and severe coking. Herein, a disruptive air-promoted strategy is explored for efficient and durable light-driven hydrogen production from ethanol over a core/shell Cr2O3@GaN nanoarchitecture. The correlative computational and experimental investigations show ethanol is energetically favorable to be adsorbed on the Cr2O3@GaN interface, followed by dehydrogenation toward acetaldehyde and protons by photoexcited holes. The released protons are then consumed for H2 evolution by photogenerated electrons. Afterward, O2 can be evolved into active oxygen species and promote the deprotonation and C-C cleavage of the key C2 intermediate, thus significantly lowering the reaction energy barrier of hydrogen evolution and removing the carbon residual with inhibited overoxidation. Consequently, hydrogen is produced at a high rate of 76.9 mole H2 per gram Cr2O3@GaN per hour by only feeding ethanol, air, and light, leading to the achievement of a turnover number of 266,943,000 mole H2 per mole Cr2O3 over a long-term operation of 180 hours. Notably, an unprecedented light-to-hydrogen efficiency of 17.6 % is achieved under concentrated light illumination. The simultaneous generation of aldehyde from ethanol dehydrogenation enables the process more economically promising.

9.
J Ovarian Res ; 17(1): 51, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402194

RESUMO

BACKGROUND: Repeated cryopreservation of embryos should occasionally be considered when embryos were not suitable for transfer. The effect of re-cryopreservation on embryos remains contentious. METHODS: This retrospective cohort study aimed to evaluate the pregnancy and neonatal outcomes of twice vitrificated blastocyst derived from once vitrified embryos. Total 410 vitrified-warmed blastocyst transfer cycles were divided into two groups according to the times of embryo vitrification: (1) vitrified blastocysts derived from fresh blastocysts (control group, n = 337); (2) twice vitrified blastocysts derived from once vitrified embryos (n = 73). The primary outcome was live birth rate. Multivariable logistic or linear regression analysis model was performed to describe the association between embryo cryopreservation times and clinical outcomes. RESULTS: No difference was observed in female age at retrieval and transfer, infertility period, body mass index (BMI), infertility type, endometrial thickness, and embryo transfer numbers between the two groups. The pregnancy outcomes of embryos in repeated cryopreservation group were comparable to those of embryos in control group, including implantation rate, clinical pregnancy rate, and live birth rate. In multivariate logistic regression analysis, the cryopreservation times did not affect the outcomes of biochemical pregnancy, clinical pregnancy, and live birth. Moreover, there was no difference in gestational age, birthweight and sex ratio of singleton newborns between groups. After correcting several possible confounding variables, no significant association was observed between cryopreservation times and neonatal birthweight. CONCLUSION: In conclusion, pregnancy and neonatal outcomes achieved with twice vitrified blastocyst transfer were comparable to those achieved with vitrified blastocyst transfer in control group.


Assuntos
Infertilidade , Vitrificação , Gravidez , Humanos , Recém-Nascido , Feminino , Peso ao Nascer , Estudos Retrospectivos , Criopreservação , Taxa de Gravidez , Blastocisto
10.
Small ; : e2309906, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221704

RESUMO

On-site hydrogen production from liquid organic hydrogen carriers e.g., methanol provides an emerging strategy for the safe storage and transportation of hydrogen. Herein, a catalytic architecture consisting of nickel-cobalt nanoclusters dispersed on gallium nitride nanowires supported by silicon for light-driven hydrogen production from methanol is reported. By correlative microscopic, spectroscopic characterizations, and density functional theory calculations, it is revealed that NiCo nanoclusters work in synergy with GaN nanowires to enable the achievement of a significantly reduced activation energy of methanol dehydrogenation by switching the potential-limiting step from *CHO → *CO to *CH3 O → *CH2 O. In combination with the marked photothermal effect, a high hydrogen rate of 5.62 mol·gcat-1·h-1 with a prominent turnover frequency of 43,460 h-1 is achieved at 5 Wcm-2 without additional energy input. Remarkably, the synergy between Co and Ni, in combination with the unique surface of GaN, renders the architecture with outstanding resistance to sintering and coking. The architecture thereby exhibits a high turnover number of >16,310,000 over 600 h. Outdoor testing validates the viability of the architecture for active and robust hydrogen evolution under natural concentrated sunlight. Overall, this work presents a promising architecture for on-site hydrogen production from CH3 OH by virtually unlimited solar energy.

11.
Gels ; 10(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247769

RESUMO

Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration. Chitosan-PEG (CP), gelatin-chitosan-PEG (GCP), hyaluronic acid-chitosan-PEG (HACP), and combined CP (CoCP) polyelectrolyte hydrogels were engineered by solvent casting and assessed for physiochemical, thermal, electrical, biodegradable, mechanical, and biological properties. The CP, GCP, HACP, and CoCP hydrogels exhibited excellent porosity (4.24 ± 0.18, 13.089 ± 1.13, 12.53 ± 1.30 and 15.88 ± 1.10 for CP, GCP, HACP and CoCP, respectively), water profile, mechanical strength, and amphiphilicity suitable for cardiac tissue engineering. The hydrogels were hemocompatible as evident from the negligible hemolysis and RBC aggregation and increased adsorption of plasma albumin. The hydrogels were cytocompatible as evident from the increased viability by MTT (>94% for all the four hydrogels) assay and direct contact assay. Also, the hydrogels supported the adhesion, growth, spreading, and proliferation of H9c2 cells as unveiled by rhodamine staining. The hydrogels promoted neo-tissue formation that was proven using rat and swine myocardial tissue explant culture. Compared to GCP and CoCP, CP and HACP were superior owing to the cell viability, hemocompatibility, and conductance, resulting in the highest degree of cytoskeletal organization and neo-tissue formation. The physiochemical and biological performance of these hydrogels supported neo-cardiac tissue formation. Overall, the CP, GCP, HACP, and CoCP hydrogel systems promise novel translational opportunities in regenerative cardiology.

12.
Neurosci Bull ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206551

RESUMO

With the advancements in gene sequencing technologies, including genome-wide association studies, polygenetic risk scores, and high-throughput sequencing, there has been a tremendous advantage in mapping a detailed blueprint for the genetic model of bipolar disorder (BD). To date, intriguing genetic clues have been identified to explain the development of BD, as well as the genetic association that might be applied for the development of susceptibility prediction and pharmacogenetic intervention. Risk genes of BD, such as CACNA1C, ANK3, TRANK1, and CLOCK, have been found to be involved in various pathophysiological processes correlated with BD. Although the specific roles of these genes have yet to be determined, genetic research on BD will help improve the prevention, therapeutics, and prognosis in clinical practice. The latest preclinical and clinical studies, and reviews of the genetics of BD, are analyzed in this review, aiming to summarize the progress in this intriguing field and to provide perspectives for individualized, precise, and effective clinical practice.

13.
Angew Chem Int Ed Engl ; 63(8): e202316733, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38170453

RESUMO

Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.

14.
Facial Plast Surg Aesthet Med ; 26(2): 185-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37751173

RESUMO

Background: A more refined and clinically related facial expression analysis is required for patients who wish to be perceived more emotionally positive. Objective: To measure the change in skin vector and volume in facial subunits when expressing positive expression (happiness) compared with negative expressions (sadness, fear, disgust, and anger), using three-dimensional (3D) stereophotogrammetry analysis. Methods: This study took 3D photographs of 20 volunteers' face at rest and during positive and negative expression. The directions of skin vector and volume changes in each facial subregion were recorded and calculated. Results: In the positive expression, 78.3% (95% confidence interval [CI] 66.8-89.9) of the medial midfacial subregions presented superolateral vector and volume increase, whereas volume decrease in 82.5% (95% CI 78.5-86.5) of the lip subregions could be observed. In the negative expression, the vector changes were predominantly inferomedial in 26.0% (95% CI 15.4-36.5) of the forehead and 36.8% (95% CI 33.2-40.3) of the upper eyelid subregions, whereas volume increases in 34.0% (95% CI 30.4-37.7) of the upper eyelid subregions were observed. Conclusions: This 3D stereophotogrammetry analysis presents the morphological difference between the positive and negative expression.


Assuntos
Expressão Facial , Testa , Humanos , Fotogrametria , Pele
15.
CNS Neurosci Ther ; 30(2): e14361, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37491837

RESUMO

AIMS: We aimed to investigate whether peripheral T-cell subsets could be a biomarker to distinguish major depressive disorder (MDD) and bipolar disorder (BD). METHODS: Medical records of hospitalized patients in the Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, from January 2015 to September 2020 with a discharge diagnosis of MDD or BD were reviewed. Patients who underwent peripheral blood examination of T-cell subtype proportions, including CD3+, CD4+, CD8+ T-cell, and natural killer (NK) cells, were enrolled. The Chi-square test, t-test, or one-way analysis of variance were used to analyze group differences. Demographic profiles and T-cell data were used to construct a random forest classifier-based diagnostic model. RESULTS: Totally, 98 cases of BD mania, 459 cases of BD depression (BD-D), and 458 cases of MDD were included. There were significant differences in the proportions of CD3+, CD4+, CD8+ T-cell, and NK cells among the three groups. Compared with MDD, the BD-D group showed higher CD8+ but lower CD4+ T-cell and a significantly lower ratio of CD4+ and CD8+ proportions. The random forest model achieved an area under the curve of 0.77 (95% confidence interval: 0.71-0.83) to distinguish BD-D from MDD patients. CONCLUSION: These findings imply that BD and MDD patients may harbor different T-cell inflammatory patterns, which could be a potential diagnostic biomarker for mood disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Bipolar/diagnóstico , Transtorno Depressivo Maior/diagnóstico , Estudos Retrospectivos , Subpopulações de Linfócitos T , Biomarcadores
16.
Hepatol Int ; 18(2): 582-594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37823937

RESUMO

BACKGROUND AND AIMS: T cells are master effectors of anti-tumor immunity in cancer. Recent studies suggest that altered lipid metabolism imposed by the tumor microenvironment constrains anti-tumor immunity. However, the tumor-associated lipid species changes that dampen T cell ability to control tumor progression are not fully understood. Here, we plan to clarify the influences of distinctly altered lipid components in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) on T-cell function, aiming to seek lipid metabolic targets for improving T cell anti-tumor effects. METHODS: Tumor tissues and non-tumor liver from HCC patients were collected for RNA-sequencing, lipid profiling and T cell characterizing, followed by correlation analysis. Additionally, the effects of significantly changed lipid components on anti-tumor potential of T cells were tested by in vitro cell experiments and/or in vivo tumor inoculated model. RESULTS: Altered lipid metabolism coincides with impaired T cell response in HBV-related HCC. Characteristic lipid composition, significantly marked by accumulation of long-chain acylcarnitines (LCACs) and reduction of lysophosphatidylcholines (LPCs), are found in the tumor tissue. Notably, LCACs accumulated are associated with T cells exhaustion and deficient functionality, while LPCs correlate to anti-tumor effects of T cells. In particular, supplement of LPCs, including LPC (20:0) and LPC (22:0), directly promote the activation and IFN-γ secretion of T cells in vitro, and suppress tumor growth in vivo. CONCLUSIONS: Our study highlights the distinctly changed lipid components closely related to T cell dysregulation in HCC, and suggests a promising strategy by decreasing LCACs and increasing LPCs for anti-tumor immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linfócitos T , Imunoterapia , Lipídeos , Microambiente Tumoral
17.
Phys Chem Chem Phys ; 25(47): 32549-32556, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997782

RESUMO

Potential applications of III-nitrides have led to their monolayer allotropes, i.e., two-dimensional (2D) III-nitrides, having attracted much attention. Recently, alloying has been demonstrated as an effective method to control the properties of 2D materials. In this study, the stability, and the electronic and chemical properties of monolayer Ga(1-x)AlxN alloys were investigated employing density functional theory (DFT) calculations and the cluster expansion (CE) method. The results show that 2D Ga(1-x)AlxN alloys are thermodynamically stable and complete miscibility in the alloys can be achieved at ambient temperature (>85 K). By analyzing CE results, the atomic arrangement of 2D Ga(1-x)AlxN was revealed, showing that Ga/Al atoms tend to mix with the Al/Ga atoms in their next nearest site. The band gaps of Ga(1-x)AlxN random alloys can be tuned by varying the chemical composition, and the corresponding bowing parameter was calculated as -0.17 eV. Biaxial tensile strain was also found to change the band gap values of Ga(1-x)AlxN random alloys ascribed to its modifications to the CBM positions. The chemical properties of Ga(1-x)AlxN can also be significantly altered by strain, making them good candidates as photocatalysts for water splitting. The present study can play a crucial role in designing and optimizing 2D III-nitrides for next-generation electronics and photocatalysis.

18.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958741

RESUMO

DNA synthesis catalyzed by DNA polymerase is essential for all life forms, and phosphodiester bond formation with phosphorus center inversion is a key step in this process. Herein, by using a single-selenium-atom-modified dNTP probe, we report a novel strategy to visualize the reaction stereochemistry and catalysis. We capture the before- and after-reaction states and provide explicit evidence of the center inversion and in-line attacking SN2 mechanism of DNA polymerization, while solving the diastereomer absolute configurations. Further, our kinetic and thermodynamic studies demonstrate that in the presence of Mg2+ ions (or Mn2+), the binding affinity (Km) and reaction selectivity (kcat/Km) of dGTPαSe-Rp were 51.1-fold (or 19.5-fold) stronger and 21.8-fold (or 11.3-fold) higher than those of dGTPαSe-Sp, respectively, indicating that the diastereomeric Se-Sp atom was quite disruptive of the binding and catalysis. Our findings reveal that the third metal ion is much more critical than the other two metal ions in both substrate recognition and bond formation, providing insights into how to better design the polymerase inhibitors and discover the therapeutics.


Assuntos
Selênio , DNA Polimerase Dirigida por DNA/metabolismo , Metais/farmacologia , Catálise , DNA , Íons , Cinética
19.
Nanoscale ; 16(1): 188-194, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38018877

RESUMO

Semi-transparent large-area luminescent solar concentrators (LSCs) have been considered an essential part of zero-energy or low-energy consuming buildings in the future. Inorganic colloidal quantum dots (QDs) are promising candidates for LSCs due to the advantages of a tunable bandgap, engineered large Stokes shift, and relatively high photoluminescence (PL) quantum yield. However, LSCs that are fabricated using colloidal quantum dots exhibited an inferior stability under long-term illumination, demanding great efforts to explore the highly stable LSCs. Herein, we fabricated large-area (∼100 cm2) tandem LSCs based on highly stable carbon dots (CDs) and highly luminescent near-infrared emitting CuInSe2-xSx/ZnS (CuInSeS/ZnS) QDs. Coupled with a Si diode as a reference, the power conversion efficiency of the corresponding tandem (dimensions: 10 × 10 × 0.5 cm3) and single LSCs (dimensions: 10 × 10 × 0.3 cm3) based on CuInSeS/ZnS QDs under one sun illumination are 0.46% and 0.5%, respectively. For single CuInSeS/ZnS QD based LSCs at a low concentration (0.039 wt%), external and internal quantum efficiencies reach up to 2.87% and 36.37%, respectively. After UV illumination for 8 h, bottom LSCs based on CuInSeS/ZnS QDs retain 93.22% of the initial PL emission, which is higher than that of LSCs (∼80%) without the CD protection. The highly efficient and stable tandem LSCs employing green CDs and NIR CuInSeS/ZnS QDs as PL emitters pave the way for the realization of large area building-integrated photovoltaic (BIPV) devices.

20.
Phys Chem Chem Phys ; 25(42): 29211-29223, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873576

RESUMO

In spite of the outstanding photoelectric properties of perovskite materials, numerous defects produced in the preparation process eventually result in decomposition of the perovskite layer. To date, the mechanism of defect passivation and hysteresis reduction via additive engineering has still been obscure for perovskite materials, which seriously restricts performance improvement of the devices. Herein, conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM) measurements were applied to probe carbamic acid ethyl ester (EU)-based trap passivation and suppression of hysteresis in perovskite films. The results indicate that the internal interaction between multifunctional bonds ("CO" and "-NH2") of EU and Pb2+ ions of the perovskite may inactivate the trap state and inhibit ion migration within sub-grains and grain boundaries (GBs), resulting in improvement of the long-term stability of the cells. In consequence, the EU-modified champion device prepared in all-air achieved a power conversion efficiency (PCE) of 20.10%, one of the high performances for the devices fabricated in air to date. In short, this work will propose some interesting speculation about ion migration as well as its influence on hysteresis in perovskite materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA