Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(42): 15593-15603, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819175

RESUMO

This study explores the protective properties and potential mechanisms of wheat-germ-derived peptide APEPEPAF (APE) against ulcerative colitis. Colitis mice induced by dextran sulfate sodium (DSS) were used as the animal model. The results showed that the APE peptide could alleviate colitis symptoms including weight loss, colon shortening, and histopathological changes. This peptide attenuated the generation of inflammatory cytokines by inhibiting the phosphorylation of protein kinase PKCζ (Thr410) and NF-κB transcriptional activity in DSS-induced mice, suggesting that APE ameliorates colitis inflammation by regulating the PKCζ/NF-κB signaling pathway. APE also preserved the barrier function of the colon by dose-dependently promoting the expression of tight junction proteins (claudin-1, zonula occluded-1, and occludin). In addition, APE significantly decreased the abundance of Bacteroides and increased the abundance of Dubosiella and Lachnospiraceae_UCG-006 to improve the intestinal flora imbalance in DSS-induced colitis mice. Therefore, wheat germ peptide APE can be used as a novel agent and dietary supplement to treat ulcerative colitis..


Assuntos
Colite Ulcerativa , Colite , Hominidae , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Triticum/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Óleos de Plantas/metabolismo , Hominidae/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Cell Infect Microbiol ; 13: 1038472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033478

RESUMO

Background: The imbalance of gut microbiota (GM) is associated with a higher risk of thrombosis in patients with atrial fibrillation (AF). Oral anticoagulants (OACs) have been found to significantly reduce the risk of thromboembolism and increase the risk of bleeding. However, the OAC-induced alterations in gut microbiota in patients with AF remain elusive. Methods: In this study, the microbial composition in 42 AF patients who received long-term OAC treatment (AF-OAC group), 47 AF patients who did not (AF group), and 40 volunteers with the risk of AF (control group) were analyzed by 16S rRNA gene sequencing of fecal bacterial DNA. The metagenomic functional prediction of major bacterial taxa was performed using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) software package. Results: The gut microbiota differed between the AF-OAC and AF groups. The abundance of Bifidobacterium and Lactobacillus decreased in the two disease groups at the genus level, but OACs treatment mitigated the decreasing tendency and increased beneficial bacterial genera, such as Megamonas. In addition, OACs reduced the abundance of pro-inflammatory taxa on the genus Ruminococcus but increased certain potential pathogenic taxa, such as genera Streptococcus, Escherichia-Shigella, and Klebsiella. The Subgroup Linear discriminant analysis effect size (LEfSe) analyses revealed that Bacteroidetes, Brucella, and Ochrobactrum were more abundant in the anticoagulated bleeding AF patients, Akkermansia and Faecalibacterium were more abundant in the non-anticoagulated-bleeding-AF patients. The neutrophil-to-lymphocyte ratio (NLR) was lower in the AF-OAC group compared with the AF group (P < 0.05). Ruminococcus was positively correlated with the NLR and negatively correlated with the CHA2DS2-VASc score (P < 0.05), and the OACs-enriched species (Megamonas and Actinobacteria) was positively correlated with the prothrombin time (PT) (P < 0.05). Ruminococcus and Roseburia were negatively associated with bleeding events (P < 0.05). Conclusions: Our study suggested that OACs might benefit AF patients by reducing the inflammatory response and modulating the composition and abundance of gut microbiota. In particular, OACs increased the abundance of some gut microbiota involved in bleeding and gastrointestinal dysfunction indicating that the exogenous supplementation with Faecalibacterium and Akkermansia might be a prophylactic strategy for AF-OAC patients to lower the risk of bleeding after anticoagulation.


Assuntos
Fibrilação Atrial , Microbioma Gastrointestinal , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/complicações , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/induzido quimicamente , Filogenia , RNA Ribossômico 16S/genética , Fatores de Risco , Anticoagulantes/uso terapêutico , Hemorragia/induzido quimicamente , Hemorragia/complicações , Administração Oral , Medição de Risco
3.
Crit Rev Food Sci Nutr ; 63(22): 5577-5593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34964419

RESUMO

Wheat germ protein is a potential resource to produce bioactive peptides. As a cheap, safe, and healthy nutritional factor, wheat germ-derived bioactive peptides (WGBPs) provide benefits and great potential for biomedical applications. The objective of this review is to reveal the current research status of WGBPs, including their preparation methods and biological functions, such as antibacterial, anti-tumor, immune regulation, antioxidant, and anti-inflammatory properties, etc. We also reviewed the information in terms of the preventive ability of WGBPs to treat serious infectious diseases, to offer their reference to further research and application. Opinions on future research directions are also discussed. Through the review of previous research, we find that there are still some scientific issues in the basic research and industrialization process of WGBPs that deserve further exploration. Firstly, based on current complex enzymolysis, the preparation and production of WGBPs need to be combined with other advanced technology to achieve efficient and large-scale production. Secondly, studies on the bioavailability, biosafety, and mechanism against different diseases of WGBPs need to be carried out in different in vitro and in vivo models. More human experimental evidence is also required to support its industrial application as a functional food and nutritional supplement.HighlightsThe purification and identification of wheat germ-derived bioactive peptides.The main biological activities and potential mechanisms of wheat germ hydrolysates/peptides.Possible absorption and transport pathways of wheat germ hydrolysate/peptide.Wheat germ peptide shows a variety of health benefits according to its amino acid sequence.Current food applications and future perspectives of wheat germ protein hydrolysates/peptide.


Assuntos
Peptídeos , Triticum , Humanos , Triticum/química , Peptídeos/química , Sequência de Aminoácidos , Grão Comestível/química , Nutrientes
4.
Front Cardiovasc Med ; 9: 909399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277750

RESUMO

Background: Pulmonary arterial hypertension (PAH) is a devastating cardio-pulmonary vascular disease in which chronic elevated pulmonary arterial pressure and pulmonary vascular remodeling lead to right ventricular failure and premature death. However, the exact molecular mechanism causing PAH remains unclear. Methods: RNA sequencing was used to analyze the transcriptional profiling of controls and rats treated with monocrotaline (MCT) for 1, 2, 3, and 4 weeks. Weighted gene co-expression network analysis (WGCNA) was employed to identify the key modules associated with the severity of PAH. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the potential biological processes and pathways of key modules. Real-time PCR and western blot analysis were used to validate the gene expression. The hub genes were validated by an independent dataset obtained from the Gene Expression Omnibus database. Results: A total of 26 gene modules were identified by WGCNA. Of these modules, two modules showed the highest correlation with the severity of PAH and were recognized as the key modules. GO analysis of key modules showed the dysregulated inflammation and immunity, particularly B-cell-mediated humoral immunity in MCT-induced PAH. KEGG pathway analysis showed the significant enrichment of the B-cell receptor signaling pathway in the key modules. Pathview analysis revealed the dysregulation of the B-cell receptor signaling pathway in detail. Moreover, a series of humoral immune response-associated genes, such as BTK, BAFFR, and TNFSF4, were found to be differentially expressed in PAH. Additionally, five genes, including BANK1, FOXF1, TLE1, CLEC4A1, and CLEC4A3, were identified and validated as the hub genes. Conclusion: This study identified the dysregulated B-cell receptor signaling pathway, as well as novel genes associated with humoral immune response in MCT-induced PAH, thereby providing a novel insight into the molecular mechanisms underlying inflammation and immunity and therapeutic targets for PAH.

5.
Oxid Med Cell Longev ; 2022: 4289383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308170

RESUMO

Bile acids are commonly known as one of the vital metabolites derived from cholesterol. The role of bile acids in glycolipid metabolism and their mechanisms in liver and cholestatic diseases have been well studied. In addition, bile acids also serve as ligands of signal molecules such as FXR, TGR5, and S1PR2 to regulate some physiological processes in vivo. Recent studies have found that bile acids signaling may also play a critical role in the central nervous system. Evidence showed that some bile acids have exhibited neuroprotective effects in experimental animal models and clinical trials of many cognitive dysfunction-related diseases. Besides, alterations in bile acid metabolisms well as the expression of different bile acid receptors have been discovered as possible biomarkers for prognosis tools in multiple cognitive dysfunction-related diseases. This review summarizes biosynthesis and regulation of bile acids, receptor classification and characteristics, receptor agonists and signaling transduction, and recent findings in cognitive dysfunction-related diseases.


Assuntos
Ácidos e Sais Biliares , Disfunção Cognitiva , Animais , Ácidos e Sais Biliares/metabolismo , Disfunção Cognitiva/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Transdução de Sinais/fisiologia
6.
PLoS One ; 8(1): e54631, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23365677

RESUMO

In addition to the expression of recombinant proteins, baculoviruses have been developed as a platform for the display of complex eukaryotic proteins on the surface of virus particles or infected insect cells. Surface display has been used extensively for antigen presentation and targeted gene delivery but is also a candidate for the display of protein libraries for molecular screening. However, although baculovirus gene libraries can be efficiently expressed and displayed on the surface of insect cells, target gene selection is inefficient probably due to super-infection which gives rise to cells expressing more than one protein. In this report baculovirus superinfection of Sf9 cells has been investigated by the use of two recombinant multiple nucleopolyhedrovirus carrying green or red fluorescent proteins under the control of both early and late promoters (vAcBacGFP and vAcBacDsRed). The reporter gene expression was detected 8 hours after the infection of vAcBacGFP and cells in early and late phases of infection could be distinguished by the fluorescence intensity of the expressed protein. Simultaneous infection with vAcBacGFP and vAcBacDsRed viruses each at 0.5 MOI resulted in 80% of infected cells co-expressing the two fluorescent proteins at 48 hours post infection (hpi), and subsequent infection with the two viruses resulted in similar co-infection rate. Most Sf9 cells were re-infectable within the first several hours post infection, but the re-infection rate then decreased to a very low level by 16 hpi. Our data demonstrate that Sf9 cells were easily super-infectable during baculovirus infection, and super-infection could occur simultaneously at the time of the primary infection or subsequently during secondary infection by progeny viruses. The efficiency of super-infection may explain the difficulties of baculovirus display library screening but would benefit the production of complex proteins requiring co-expression of multiple polypeptides.


Assuntos
Baculoviridae/genética , Biblioteca de Peptídeos , Proteínas Recombinantes/biossíntese , Animais , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Ensaios de Triagem em Larga Escala/normas , Proteínas Luminescentes , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA