Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 18(9): e2106341, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34908232

RESUMO

Germanium, the prime applied semiconductor, is widely used in solid-state electronics and photoelectronics. Unfortunately, since the 3D diamond-like structure with strong covalent bonds impedes the 2D anisotropic growth, only the examples of ultrathin Ge along the (111) plane have been investigated, much less to the controllable synthesis along another crystal surface. Meanwhile, Ge(111) flakes are limited in semiconductor applications because of their gapless property. Here, ultrathin Ge(110) single crystal is synthesized with semiconductive property via gallium-associated self-limiting growth. The obtained ultrathin Ge(110) single crystal exhibits anisotropic honeycomb structure, uniformly incremental lattice, wide tunable direct-bandgap, blue-shifted photoluminescence emission, and unique phonon modes, which are consistent with the previous theoretical predictions. It also confirms excellent second harmonic generation and high hole mobility of 724 cm2 V-1 s-1 . The realization of ultrathin Ge(110) single crystal will provide an excellent candidate for application in electronics and optoelectronics.

2.
Small ; 17(45): e2103442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569140

RESUMO

Surface-enhanced Raman scattering (SERS) based on 2D semiconductors has been rapidly developed due to their chemical stability and molecule-specific SERS activity. High signal reproducibility is urgently required towards practical SERS applications. 2D gallium nitride (GaN) with highly polar Ga-N bonds enables strong dipole-dipole interactions with the probe molecules, and abundant DOS (density of states) near its Fermi level increases the intermolecular charge transfer probability, making it a suitable SERS substrate. Herein, 2D micrometer-sized GaN crystals are demonstrated to be sensitive SERS platforms with excellent signal reproducibility and stability. Strong dipole-dipole interaction between the dye molecule and 2D GaN enhances the molecular polarizability. Furthermore, 2D GaN benefits its SERS enhancement by the combination of increased DOS and more efficient charge transfer resonances when compared with its bulk counterpart.


Assuntos
Semicondutores , Análise Espectral Raman , Gálio , Reprodutibilidade dos Testes
3.
Nat Commun ; 11(1): 3979, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769968

RESUMO

Ultra-thin III-V semiconductors, which exhibit intriguing characteristics, such as two-dimensional (2D) electron gas, enhanced electron-hole interaction strength, and strongly polarized light emission, have always been anticipated in future electronics. However, their inherent strong covalent bonding in three dimensions hinders the layer-by-layer exfoliation, and even worse, impedes the 2D anisotropic growth. The synthesis of desirable ultra-thin III-V semiconductors is hence still in its infancy. Here we report the growth of a majority of ultra-thin III-V single crystals, ranging from ultra-narrow to wide bandgap semiconductors, through enhancing the interfacial interaction between the III-V crystals and the growth substrates to proceed the 2D layer-by-layer growth mode. The resultant ultra-thin single crystals exhibit fascinating properties of phonon frequency variation, bandgap shift, and giant second harmonic generation. Our strategy can provide an inspiration for synthesizing unexpected ultra-thin non-layered systems and also drive exploration of III-V semiconductor-based electronics.

4.
iScience ; 13: 277-283, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30875609

RESUMO

The lattice directly determines the electronic structure, and it enables controllably tailoring the properties by deforming the lattices of two-dimensional (2D) materials. Owing to the unbalanced electrostatic equilibrium among the dislocated atoms, the deformed lattice is thermodynamically unstable and would recover to the initial state. Here, we demonstrate that the recovery of deformed 2D lattices could be directly regulated via doping metal donors to reconstruct electrostatic equilibrium. Compared with the methods that employed external force fields with intrinsic instability and nonuniformity, the stretched 2D molybdenum diselenide (MoSe2) could be uniformly retained and permanently preserved via doping metal atoms with more outermost electrons and smaller electronegativity than Mo. We believe that the proposed strategy could open up a new avenue in directly regulating the atomic-thickness lattice and promote its practical applications based on 2D crystals.

5.
J Am Chem Soc ; 140(48): 16392-16395, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30380835

RESUMO

Two-dimensional (2D) gallium nitride (GaN) has been highly anticipated because its quantum confinement effect enables desirable deep-ultraviolet emission, excitonic effect and electronic transport properties. However, the currently obtained 2D GaN can only exist as intercalated layers of atomically thin quantum wells or nanometer-scale islands, limiting further exploration of its intrinsic characteristics. Here, we report, for the first time, the growth of micrometer-sized 2D GaN single crystals on liquid metals via a surface-confined nitridation reaction and demonstrate that the 2D GaN shows uniformly incremental lattice, unique phonon modes, blue-shifted photoluminescence emission and improved internal quantum efficiency, providing direct evidence to the previous theoretical predictions. The as-grown 2D GaN exhibits an electronic mobility of 160 cm2·V-1·s-1. These findings pave the way to potential optoelectronic applications of 2D GaN single crystals.

6.
Angew Chem Int Ed Engl ; 57(3): 755-759, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29193619

RESUMO

Lanthanide (Ln) group elements have been attracting considerable attention owing to the distinct optical properties. The crystal-field surroundings of Ln ions in the host materials can determine their energy level splitting, which is of vital importance to tailor their optical properties. 2D MoS2 single crystals were utilized as the host material to embed Eu3+ and energy-level splitting was achieved for tuning its photoluminescence (PL). The high anisotropy of the 2D host materials makes them distort the degenerate orbitals of the Ln ions more efficiently than the symmetrical bulk host materials. A significant red-shift of the PL peak for Eu3+ was observed. The strategy for tailoring the energy level splitting of Ln ions by the highly designable 2D material crystal field provides a new method to extend their optical properties.

7.
Adv Sci (Weinh) ; 3(12): 1600130, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27981005

RESUMO

Humans have numerous senses, wherein vision, hearing, smell, taste, and touch are considered as the five conventionally acknowledged senses. Triggered by light, sound, or other physical stimulations, the sensory organs of human body are excited, leading to the transformation of the afferent energy into neural activity. Also converting other signals into electronical signals, graphene-based film shows its inherent advantages in responding to the tiny stimulations. In this review, the human-like senses and reflexes of graphene-based films are presented. The review starts with the brief discussions about the preparation and optimization of graphene-based film, as where as its new progress in synthesis method, transfer operation, film-formation technologies and optimization techniques. Various human-like senses of graphene-based film and their recent advancements are then summarized, including light-sensitive devices, acoustic devices, gas sensors, biomolecules and wearable devices. Similar to the reflex action of humans, graphene-based film also exhibits reflex when under thermal radiation and light actuation. Finally, the current challenges associated with human-like applications are discussed to help guide the future research on graphene films. At last, the future opportunities lie in the new applicable human-like senses and the integration of multiple senses that can raise a revolution in bionic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA