Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792234

RESUMO

The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Neoplasias , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38775355

RESUMO

Noncontact sensors have demonstrated significant potential in human-machine interactions (HMIs) in terms of hygiene and less wear and tear. The development of soft, stable, and simply structured noncontact sensors is highly desired for their practical applications in HMIs. This work reports on electret-based self-powered noncontact sensors that are soft, transparent, stable, and easy to manufacture. The sensors contain a three-layer structure with a thickness of 0.34 mm that is fabricated by simply stacking a polymeric electret layer, an electrode layer, and a substrate layer together. The fabricated sensors show high charge-retention capability, keeping over 98% of the initial surface potential even after 90 h, and can accurately and repeatedly sense external approaching objects with impressive durability. The intensity of the detected signal shows a strong dependence on the distance between the object and the sensor, capable of sensing a distance as small as 2 mm. Furthermore, the sensors can report stable signals in response to external objects over 3000 cycles. By virtue of the signal dependence on distance, an intelligent noncontact positioning system is developed that can precisely detect the location of an approaching object. Finally, by integrating with eyeglasses, the transparent sensor successfully captures the movements of blinks for information translation. This work may contribute to the development of stable and easily manufactured noncontact soft sensors for HMI applications, for instance, assisting with communication for locked-in syndrome patients.

3.
Nat Cell Biol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783142

RESUMO

When cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy). TFAM contains a molecular zip code called the LC3 interacting region (LIR) motif that enables this binding. Although mutating TFAM's LIR motif did not affect its normal mitochondrial functions, more mtDNA accumulated in the cell cytoplasm, activating inflammatory signalling pathways. Thus, TFAM mediates autophagic removal of leaked mtDNA to restrict inflammation. Identifying this mechanism advances understanding of how cells exploit autophagy machinery to selectively target and degrade inflammatory mtDNA. These findings could inform research on diseases involving mitochondrial damage and inflammation.

4.
ArXiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584619

RESUMO

Shape plays an important role in computer graphics, offering informative features to convey an object's morphology and functionality. Shape analysis in brain imaging can help interpret structural and functionality correlations of the human brain. In this work, we investigate the shape of the brain's 3D white matter connections and its potential predictive relationship to human cognitive function. We reconstruct brain connections as sequences of 3D points using diffusion magnetic resonance imaging (dMRI) tractography. To describe each connection, we extract 12 shape descriptors in addition to traditional dMRI connectivity and tissue microstructure features. We introduce a novel framework, Shape--fused Fiber Cluster Transformer (SFFormer), that leverages a multi-head cross-attention feature fusion module to predict subject-specific language performance based on dMRI tractography. We assess the performance of the method on a large dataset including 1065 healthy young adults. The results demonstrate that both the transformer-based SFFormer model and its inter/intra feature fusion with shape, microstructure, and connectivity are informative, and together, they improve the prediction of subject-specific language performance scores. Overall, our results indicate that the shape of the brain's connections is predictive of human language function.

5.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479721

RESUMO

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Arterial Pulmonar/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Remodelação Vascular/fisiologia , Proliferação de Células , Artéria Pulmonar/patologia , Hipertensão Pulmonar Primária Familiar/patologia , Miócitos de Músculo Liso , Monocrotalina/efeitos adversos , Modelos Animais de Doenças , Histona Desacetilases/metabolismo
6.
Heliyon ; 10(5): e27065, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495138

RESUMO

Background: Ischemic heart disease (IHD) is the leading cause of death worldwide. High fasting plasma glucose (FPG) is an increasing risk factor for IHD. We aimed to explore the long-term trends of high FPG-attributed IHD mortality during 1990-2019. Methods: Data were obtained from the Global Burden of Disease Study 2019 database. Deaths, disability-adjusted life-years (DALYs), the age-standardized mortality rate (ASMR) and age-standardized DALY rate (ASDR) of IHD attributable to high FPG were estimated by sex, socio-demographic index (SDI), regions and age. Estimated annual percentage changes (EAPCs) were calculated to assess the trends of ASMR and ASDR of IHD attributable to high FPG. Results: IHD attributable to high FPG deaths increased from 1.04 million (0.62-1.63) in 1990 to 2.35 million (1.4-3.7) in 2019, and the corresponding DALYs rose from 19.82 million (12.68-29.4) to 43.3 million (27.8-64.2). In 2019, ASMR and ASDR of IHD burden attributable to high FPG were 30.45 (17.09-49.03) and 534.8 (340.7-792.2), respectively. The highest ASMR and ASDR of IHD attributable to high FPG occurred in low-middle SDI quintiles, with 39.28 (22.40-62.76) and 742.3 (461.5-1117.5), respectively, followed by low SDI quintiles and middle SDI quintiles. Males had higher ASMR and ASDR compared to females across the past 30 years. In addition, ASRs of DALYs and deaths were highest in those over 95 years old. Conclusion: High FPG-attributed IHD mortality and DALYs have increased dramatically and globally, particularly in low, low-middle SDI quintiles and among the elderly. High FPG remains a great concern on the global burden of IHD and effective prevention and interventions are urgently needed to curb the ranking IHD burden, especially in lower SDI regions.

7.
Med Image Anal ; 94: 103120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458095

RESUMO

We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography and associated pointwise tissue microstructure measurements. By employing a point cloud representation, TractGeoNet can directly utilize tissue microstructure and positional information from all points within a fiber tract without the need to average or bin data along the streamline as traditionally required by dMRI tractometry methods. To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss, which encourages the model to focus on accurately predicting the relative differences between regression label scores rather than just their absolute values. In addition, to gain insight into the brain regions that contribute most strongly to the prediction results, we propose a Critical Region Localization algorithm. This algorithm identifies highly predictive anatomical regions within the white matter fiber tracts for the regression task. We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language using a dataset of 20 association white matter fiber tracts from 806 subjects from the Human Connectome Project Young Adult dataset. The results demonstrate superior prediction performance of TractGeoNet compared to several popular regression models that have been applied to predict individual cognitive performance based on neuroimaging features. Of the twenty tracts studied, we find that the left arcuate fasciculus tract is the most highly predictive of the two studied language performance assessments. Within each tract, we localize critical regions whose microstructure and point information are highly and consistently predictive of language performance across different subjects and across multiple independently trained models. These critical regions are widespread and distributed across both hemispheres and all cerebral lobes, including areas of the brain considered important for language function such as superior and anterior temporal regions, pars opercularis, and precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric deep learning to enhance the study of the brain's white matter fiber tracts and to relate their structure to human traits such as language performance.


Assuntos
Conectoma , Aprendizado Profundo , Substância Branca , Adulto Jovem , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Idioma , Vias Neurais
8.
Cell Rep ; 43(3): 113825, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38386555

RESUMO

Jasmonate (JA) is a well-known phytohormone essential for plant response to biotic stress. Recently, a crucial role of JA signaling in salt resistance has been highlighted; however, the specific regulatory mechanism remains largely unknown. In this study, we found that the NUCLEAR FACTOR-Y (NF-Y) subunits NF-YA1, NF-YB2, and NF-YC9 form a trimeric complex that positively regulates the expression of salinity-responsive genes, whereas JASMONATE-ZIM DOMAIN protein 8 (JAZ8) directly interacts with three subunits and acts as the key repressor to suppress both the assembly of the NF-YA1-YB2-YC9 trimeric complex and the transcriptional activation activity of the complex. When plants encounter high salinity, JA levels are elevated and perceived by the CORONATINE INSENSITIVE (COI) 1 receptor, leading to the degradation of JAZ8 via the 26S proteasome pathway, thereby releasing the activity of the NF-YA1-YB2-YC9 complex, initiating the activation of salinity-responsive genes, such as MYB75, and thus enhancing the salinity tolerance of plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Eur J Clin Microbiol Infect Dis ; 43(4): 747-765, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367094

RESUMO

PURPOSE: High fasting plasma glucose (HFPG) has been identified as a risk factor for drug-resistant tuberculosis incidence and mortality. However, the epidemic characteristics of HFPG-attributable multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) remain unclear. We aimed to analyze the global spatial patterns and temporal trends of HFPG-attributable MDR-TB and XDR-TB from 1990 to 2019. METHODS: Utilizing data from the Global Burden of Disease 2019 project, annual deaths and disability-adjusted life years (DALYs) of HFPG-attributable MDR-TB and XDR-TB were conducted from 1990 to 2019. Joinpoint regression was employed to quantify trends over time. RESULTS: From 1990 to 2019, the deaths and DALYs due to HFPG-attributable MDR-TB and XDR-TB globally showed an overall increasing trend, with a significant increase until 2003 to 2004, followed by a gradual decline or stability thereafter. The low sociodemographic index (SDI) region experienced the most significant increase over the past 30 years. Regionally, Sub-Saharan Africa, Central Asia and Oceania remained the highest burden. Furthermore, there was a sex and age disparity in the burden of HFPG-attributable MDR-TB and XDR-TB, with young males in the 25-34 age group experiencing higher mortality, DALYs burden and a faster increasing trend than females. Interestingly, an increasing trend followed by a stable or decreasing pattern was observed in the ASMR and ASDR of HFPG-attributable MDR-TB and XDR-TB with SDI increasing. CONCLUSION: The burden of HFPG-attributable MDR-TB and XDR-TB rose worldwide from 1990 to 2019. These findings emphasize the importance of routine bi-directional screening and integrated management for drug-resistant TB and diabetes.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Tuberculose Resistente a Múltiplos Medicamentos , Masculino , Feminino , Humanos , Glicemia , Estudos Retrospectivos , Carga Global da Doença , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Jejum
11.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260369

RESUMO

The retinogeniculate visual pathway (RGVP) is responsible for carrying visual information from the retina to the lateral geniculate nucleus. Identification and visualization of the RGVP are important in studying the anatomy of the visual system and can inform the treatment of related brain diseases. Diffusion MRI (dMRI) tractography is an advanced imaging method that uniquely enables in vivo mapping of the 3D trajectory of the RGVP. Currently, identification of the RGVP from tractography data relies on expert (manual) selection of tractography streamlines, which is time-consuming, has high clinical and expert labor costs, and is affected by inter-observer variability. In this paper, we present a novel deep learning framework, DeepRGVP , to enable fast and accurate identification of the RGVP from dMRI tractography data. We design a novel microstructure-informed supervised contrastive learning method that leverages both streamline label and tissue microstructure information to determine positive and negative pairs. We propose a simple and successful streamline-level data augmentation method to address highly imbalanced training data, where the number of RGVP streamlines is much lower than that of non-RGVP streamlines. We perform comparisons with several state-of-the-art deep learning methods that were designed for tractography parcellation, and we show superior RGVP identification results using DeepRGVP. In addition, we demonstrate a good generalizability of DeepRGVP to dMRI tractography data from neurosurgical patients with pituitary tumors and we show DeepRGVP can successfully identify RGVPs despite the effect of lesions affecting the RGVPs. Overall, our study shows the high potential of using deep learning to automatically identify the RGVP.

12.
J Magn Reson Imaging ; 59(5): 1710-1722, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37497811

RESUMO

BACKGROUND: Accurate diagnosis of breast lesions and discrimination of axillary lymph node (ALN) metastases largely depend on radiologist experience. PURPOSE: To develop a deep learning-based whole-process system (DLWPS) for segmentation and diagnosis of breast lesions and discrimination of ALN metastasis. STUDY TYPE: Retrospective. POPULATION: 1760 breast patients, who were divided into training and validation sets (1110 patients), internal (476 patients), and external (174 patients) test sets. FIELD STRENGTH/SEQUENCE: 3.0T/dynamic contrast-enhanced (DCE)-MRI sequence. ASSESSMENT: DLWPS was developed using segmentation and classification models. The DLWPS-based segmentation model was developed by the U-Net framework, which combined the attention module and the edge feature extraction module. The average score of the output scores of three networks was used as the result of the DLWPS-based classification model. Moreover, the radiologists' diagnosis without and with the DLWPS-assistance was explored. To reveal the underlying biological basis of DLWPS, genetic analysis was performed based on RNA-sequencing data. STATISTICAL TESTS: Dice similarity coefficient (DI), area under receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and kappa value. RESULTS: The segmentation model reached a DI of 0.828 and 0.813 in the internal and external test sets, respectively. Within the breast lesions diagnosis, the DLWPS achieved AUCs of 0.973 in internal test set and 0.936 in external test set. For ALN metastasis discrimination, the DLWPS achieved AUCs of 0.927 in internal test set and 0.917 in external test set. The agreement of radiologists improved with the DLWPS-assistance from 0.547 to 0.794, and from 0.848 to 0.892 in breast lesions diagnosis and ALN metastasis discrimination, respectively. Additionally, 10 breast cancers with ALN metastasis were associated with pathways of aerobic electron transport chain and cytoplasmic translation. DATA CONCLUSION: The performance of DLWPS indicates that it can promote radiologists in the judgment of breast lesions and ALN metastasis and nonmetastasis. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Estudos Retrospectivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética
13.
Am J Physiol Cell Physiol ; 326(1): C27-C39, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661919

RESUMO

The follicle is the basic structural and functional unit of the ovary in female mammals. The excessive depletion of follicles will lead to diminished ovarian reserve or even premature ovarian failure, resulting in diminished ovarian oogenesis and endocrine function. Excessive follicular depletion is mainly due to loss of primordial follicles. Our analysis of published human ovarian single-cell sequencing results by others revealed a significant increase in rho-associated protein kinase 1 (ROCK1) expression during primordial follicle development. However, the role of ROCK1 in primordial follicle development and maintenance is not clear. This study revealed a gradual increase in ROCK1 expression during primordial follicle activation. Inhibition of ROCK1 resulted in reduced primordial follicle activation, decreased follicular reserve, and delayed development of growing follicles. This effect may be achieved through the HIPPO pathway. The present study indicates that ROCK1 is a key molecule for primordial follicular reserve and follicular development.NEW & NOTEWORTHY ROCK1, one of the Rho GTPases, plays an important role in primordial follicle reserve and follicular development. ROCK1 was primarily expressed in the cytoplasm of oocytes and granulosa cell in mice. Inhibition of ROCK1 significantly reduced the primordial follicle reserve and delayed growing follicle development. ROCK1 regulates primordial follicular reserve and follicle development through the HIPPO signaling pathway. These findings shed new lights on the physiology of sustaining female reproduction.


Assuntos
Oócitos , Folículo Ovariano , Animais , Feminino , Humanos , Camundongos , Células da Granulosa/metabolismo , Mamíferos , Oogênese , Folículo Ovariano/metabolismo , Ovário/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
14.
Risk Manag Healthc Policy ; 16: 2685-2702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38095012

RESUMO

Background: China has lead to the inception of the Health Poverty Alleviation Project (HPAP) in 2015. While the previous studies suggest that, despite its apparent reduction in patients' financial strain, the long-term poverty reduction effects are yet to be fully elucidated. This study explores HPAP's enduring impact on poverty reduction and the potential moral hazards. Methods: Data were obtained from four waves of the China Health and Retirement Longitudinal Study (CHARLS) spanning 2011-2018. We employed difference-in-differences (DID) models to gauge HPAP's influence on participants' poverty vulnerability, health outcomes, and healthcare utilization. The dynamic DID model is employed to test the robustness of HPAP policy effects. The mediation effect models were used to understand HPAP policy outcomes through physical examinations and inpatient care. Results: Our dataset encompassed 40,384 participants, of which 5946 (14.72%) had been exposed to HPAP and 34,438 (85.28%) had not access. Our findings reveal that HPAP decreases poverty vulnerability by 3.3% (p < 0.01) and attenuates health deterioration by 1.84% (p < 0.01). Furthermore, HPAP enhances inpatient care utilization by 9.34% (p < 0.01) and self-treatment behaviors by 4.1% (p < 0.01) while significantly slashing outpatient and inpatient expenses (p < 0.05). The implementation of HPAP has significantly reduced healthcare costs by 72.8% (p < 0.05) out-of-pocket (OOP) payments of outpatient care during the past month for the last time, and 89.39% (p < 0.05) out-of-pocket (OOP) payments of inpatient care during past the year for the last time. Mechanistic analyses have shown that the indirect effect of the HPAP policy decreases poverty vulnerability by -0.132% (p < 0.05) physical examinations and -0.309% (p < 0.05) inpatient care. Conclusion: The HPAP initiative markedly attenuates poverty vulnerability and forestalls health decline among the rural populace. Moreover, HPAP bolsters healthcare service use, such as physical examinations and inpatient care, primarily attributed to the release of pent-up demand rather than moral hazards.

15.
Front Public Health ; 11: 1328265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106900

RESUMO

Background: In 2016, the Chinese government introduced an integration reform of the health insurance system with the aim to enhance equity in healthcare coverage and reduce disparities between urban and rural sectors. The gradual introduction of the policy integrating urban and rural medical insurance in pilot cities provides an opportunity to evaluate the policy impact. This study attempts to assess the policy impact of urban-rural health insurance integration on the chronic poverty of rural residents and to analyze the mechanisms. Method: Based on the four waves of data from the China Health and Retirement Longitudinal Study (CHARLS) conducted in 2011, 2013, 2015, and 2018, we employed a staggered difference-in-differences (staggered DID) model to assess the impact of integrating urban-rural health insurance on poverty vulnerability among rural inhabitants and a mediation model to analyze the mechanism channel of the policy impact. Results: (1) Baseline regression analysis revealed that the urban-rural health insurance integration significantly reduced the poverty vulnerability of rural residents by 6.32% (p < 0.01). The one health insurance system with one unified scheme of contributions and benefits package (OSOS, 6.27%, p < 0.01) is more effective than the transitional one health insurance system with multiple schemes (OSMS, 3.25%, p < 0.01). (2) The heterogeneity analysis results showed that the urban-rural health insurance integration had a more significant impact on vulnerable groups with relatively poor health (7.84%, p < 0.1) than those with fairly good health (6.07%, p < 0.01), and it also significantly reduced the poverty vulnerability of the group with chronic diseases by 9.59% (p < 0.01). The integration policy can significantly reduce the poverty vulnerability of the low consumption and low medical expenditure groups by 8.6% (p < 0.01) and 7.64% (p < 0.01), respectively, compared to their counterparts. (3) The mechanism analysis results showed that the urban-rural health insurance integration can partially enhance labor supply (14.23%, p < 0.01) and physical examinations (6.28%, p < 0.01). The indirect effects of labor supply and physical examination in reducing poverty vulnerability are 0.14%, 0.13% respectively. Conclusion: The urban-rural health insurance integration policy significantly reduced poverty vulnerability, and the OSOS is more effective than the OSMS. The urban-rural health insurance integration policy can significantly reduce poverty vulnerability for low consumption and poor health groups. Labor supply and physical examination are indirect channels of the impact. Both channels potentially increase rural household income and expectations of investment in human health capital to achieve the policy objective of eliminating chronic poverty.


Assuntos
Equidade em Saúde , Seguro Saúde , Humanos , Estudos Longitudinais , Pobreza , Atenção à Saúde
16.
Eur J Pharmacol ; 961: 176151, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37914064

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT), a pleiotropic protein, promotes the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), which is associated with the genesis and progression of pulmonary arterial hypertension (PAH). NAMPT is highly increased in PAH patient's plasma and highly relevant to PAH severity. The mRNA and protein levels of NAMPT are elevated in PAH animal models. However, the underlying molecular mechanisms how NAMPT mediated platelet-derived growth factor (PDGF)-induced PASMCs proliferation are still unclear. The present study aimed to address these issues. Primary cultured PASMCs were attained from male Sprague-Dawley (SD) rats. Western blotting, RT-PCR, ELISA, cell transfection, Cell Counting Kit-8 (CCK-8) and EdU incorporation assays were used in the experiments. We showed that PDGF upregulated NAMPT expression through the activation of signal transducers and activators of transcription 5 (STAT5), and elevated extracellular NAMPT further promoted the activation of NF-κB through Toll-like receptor 4 (TLR4), which ultimately upregulated polo-like kinase 4 (PLK4) expression leading to PASMCs proliferation. Knockdown of STAT5, NAMPT or PLK4, and inhibition of TLR4 or NF-κB suppressed PDGF-induced PASMCs proliferation. Our study suggests that NAMPT plays an essential role in PDGF-induced PASMCs proliferation via TLR4/NF-κB/PLK4 pathway, suggesting that targeting NAMPT might be valuable in ameliorating pulmonary arterial hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Ratos , Animais , Masculino , Fator de Crescimento Derivado de Plaquetas/metabolismo , Artéria Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Proliferação de Células , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Fator de Transcrição STAT5/efeitos adversos , Fator de Transcrição STAT5/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
17.
BMJ Open ; 13(9): e074134, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770275

RESUMO

OBJECTIVE: This study aimed to analyse the burden and temporal trends of tuberculosis (TB) incidence and mortality globally, as well as the association between mortality-to-incidence ratio (MIR) and Socio-Demographic Index (SDI). DESIGN: A retrospective analysis of TB data from 1990 to 2019 was conducted using the Global Burden of Disease Study database. RESULTS: Between 1990 and 2019, there was a declining trend in the global incidence and mortality of TB. High SDI regions experienced a higher declining rate than in low SDI regions during the same period. Nearly half of the new patients occurred in South Asia. In addition, there is a sex-age imbalance in the overall burden of TB, with young males having higher incidence and mortality than females. In terms of the three subtypes of TB, drug-sensitive (DS)-TB accounted for more than 90% of the incidents and deaths and experienced a decline over the past 30 years. However, drug-resistant TB (multidrug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB) showed an overall increasing trend in age-standardised incidence rates and age-standardised mortality rates, with an inflection point after the year 2000. At the regional level, South Asia and Eastern Europe remained a high burden of drug-resistant TB incidence and mortality. Interestingly, a negative correlation was found between the MIR and SDI for TB, including DS-TB, MDR-TB and XDR-TB. Notably, central sub-Saharan Africa had the highest MIR, which indicated a higher-than-expected burden given its level of sociodemographic development. CONCLUSION: This study provides comprehensive insights into the global burden and temporal trends of TB incidence and mortality, as well as the relationship between MIR and SDI. These findings contribute to our understanding of TB epidemiology and can inform public health strategies for prevention and management.


Assuntos
Infecções por HIV , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Masculino , Feminino , Humanos , Carga Global da Doença , Estudos Retrospectivos , Tuberculose/epidemiologia , Incidência , Saúde Global , Infecções por HIV/epidemiologia
18.
Chin J Cancer Res ; 35(4): 408-423, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691895

RESUMO

Objective: Accurate detection and classification of breast lesions in early stage is crucial to timely formulate effective treatments for patients. We aim to develop a fully automatic system to detect and classify breast lesions using multiple contrast-enhanced mammography (CEM) images. Methods: In this study, a total of 1,903 females who underwent CEM examination from three hospitals were enrolled as the training set, internal testing set, pooled external testing set and prospective testing set. Here we developed a CEM-based multiprocess detection and classification system (MDCS) to perform the task of detection and classification of breast lesions. In this system, we introduced an innovative auxiliary feature fusion (AFF) algorithm that could intelligently incorporates multiple types of information from CEM images. The average free-response receiver operating characteristic score (AFROC-Score) was presented to validate system's detection performance, and the performance of classification was evaluated by area under the receiver operating characteristic curve (AUC). Furthermore, we assessed the diagnostic value of MDCS through visual analysis of disputed cases, comparing its performance and efficiency with that of radiologists and exploring whether it could augment radiologists' performance. Results: On the pooled external and prospective testing sets, MDCS always maintained a high standalone performance, with AFROC-Scores of 0.953 and 0.963 for detection task, and AUCs for classification were 0.909 [95% confidence interval (95% CI): 0.822-0.996] and 0.912 (95% CI: 0.840-0.985), respectively. It also achieved higher sensitivity than all senior radiologists and higher specificity than all junior radiologists on pooled external and prospective testing sets. Moreover, MDCS performed superior diagnostic efficiency with an average reading time of 5 seconds, compared to the radiologists' average reading time of 3.2 min. The average performance of all radiologists was also improved to varying degrees with MDCS assistance. Conclusions: MDCS demonstrated excellent performance in the detection and classification of breast lesions, and greatly enhanced the overall performance of radiologists.

19.
Respir Res ; 24(1): 216, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674165

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) and GTPase dynamin-related protein 1 (Drp1)-dependent aberrant mitochondrial fission are closely linked to the pathogenesis of asthma. However, it is unclear whether Drp1-mediated mitochondrial fission and its downstream targets mediate MIF-induced proliferation of airway smooth muscle cells (ASMCs) in vitro and airway remodeling in chronic asthma models. The present study aims to clarify these issues. METHODS: In this study, primary cultured ASMCs and ovalbumin (OVA)-induced asthmatic rats were applied. Cell proliferation was detected by CCK-8 and EdU assays. Western blotting was used to detect extracellular signal-regulated kinase (ERK) 1/2, Drp1, autophagy-related markers and E-cadherin protein phosphorylation and expression. Inflammatory cytokines production, airway reactivity test, histological staining and immunohistochemical staining were conducted to evaluate the development of asthma. Transmission electron microscopy was used to observe the mitochondrial ultrastructure. RESULTS: In primary cultured ASMCs, MIF increased the phosphorylation level of Drp1 at the Ser616 site through activation of the ERK1/2 signaling pathway, which further activated autophagy and reduced E-cadherin expression, ultimately leading to ASMCs proliferation. In OVA-induced asthmatic rats, MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP) treatment, suppression of mitochondrial fission by Mdivi-1 or inhibiting autophagy with chloroquine phosphate (CQ) all attenuated the development of airway remodeling. CONCLUSIONS: The present study provides novel insights that MIF promotes airway remodeling in asthma by activating autophagy and degradation of E-cadherin via ERK/Drp1 signaling pathway, suggesting that targeting MIF/ERK/Drp1 might have potential therapeutic value for the prevention and treatment of asthma.


Assuntos
Asma , Fatores Inibidores da Migração de Macrófagos , Animais , Ratos , Remodelação das Vias Aéreas , Dinaminas , Asma/induzido quimicamente , Autofagia , Caderinas
20.
Eur J Pharmacol ; 956: 175968, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549728

RESUMO

To address the molecular mechanisms underlying macrophage migration inhibitory factor (MIF) induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration and vascular remodeling in pulmonary hypertension (PH), primary cultured rat PASMCs and monocrotaline (MCT)-induced rats with PH were applied in the present study. The results showed that MIF increased signal transducer and activator of transcription 3 (STAT3) phosphorylation, and then stimulated activating transcription factor 6 (ATF6) activation, subsequently triggered autophagy activation, which further led to programmed cell death factor 4 (PDCD4) lysosomal degradation, and eventually promoted PASMCs proliferation/migration. In lung tissues of MCT rats, MIF protein expression was elevated, phosphorylation of STAT3 and activation of ATF6 were increased, activation of autophagy was evident, and reduction of PDCD4 was observed. Intervention with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP), ATF6 blocker melatonin or autophagy inhibitor chloroquine, confirmed the in vitro interaction among MIF, STAT3, ATF6, autophagy and PDCD4 in MCT induced rats with PH. Targeting MIF/STAT3/ATF6/autophagy/PDCD4 axis effectively prevented the development of PH by suppressing PASMCs proliferation and vascular remodeling. In conclusions, we demonstrate that MIF activates the STAT3/ATF6/autophagy cascade and then degrades PDCD4 leading to PASMCs proliferation/migration and pulmonary vascular remodeling, suggesting that intervention this axis might have potential value in management of PH.


Assuntos
Proteínas Reguladoras de Apoptose , Hipertensão Pulmonar , Fatores Inibidores da Migração de Macrófagos , Animais , Ratos , Fator 6 Ativador da Transcrição/metabolismo , Autofagia/fisiologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Fator de Transcrição STAT3/metabolismo , Remodelação Vascular , Proteínas Reguladoras de Apoptose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA