Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(8): 5563-5571, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38828903

RESUMO

BACKGROUND: Electron beams are used at extended distances ranging between 300 to 700 cm to uniformly cover the entirety of the patient's skin for total skin electron therapy (TSET). Even with electron beams utilizing the high dose rate total skin electron (HDTSe) mode from the Varian 23iX or TrueBeam accelerators, the dose rate is only 2500 cGy/min at source-to-surface distance (SSD) = 100 cm. At extended distances, the decrease in dose rate leads to long beam delivery times that can limit or even prevent the use of the treatment for patients who, in their weakened condition, may be unable to stand on their own for extended periods of time. Previously, to increase dose rate, a customized 6 MeV electron beam was created by removing the x-ray target, flattening filter, beam monitor chamber, and so forth. from the beam path (Chen, et at IJROBP 59, 2004) for TSET. Using this scattering-foil free (SFF) electron beam requires the treatment distance be extended to 700 cm to achieve dose uniformity from the single beam. This room size requirement has limited the widespread use of the 6 MeV-SFF beam. PURPOSE: This study explores an application of a dual-field technique with a 6 MeV-SFF beam to provide broad and uniform electron fields to reduce the treatment distances in order to overcome treatment room size limitations. METHODS: The EGSnrc system was used to generate incident beams. Gantry angles between 6 MeV-SFF dual-fields were optimized to achieve the similar patient skin dose distribution resulting from a standard 6 MeV-HDTSe dual-field configuration. The patient skin dose comparisons were performed based on the patient treatment setup geometries using dose-volume-histograms. RESULTS: Similar dose coverage can be achieved between 6 MeV-SFF and 6 MeV-HDTSe beams by reducing gantry angles between dual-field geometries by 8° and 7° at treatment distances of 400 and 500 cm, respectively. To achieve 95% mean dose to the first 5 mm of skin depth in the torso area, the mean dose to depths of 5-10 mm and 10-15 mm below the skin surface was 74% (74%) and 49% (50%) of the prescribed dose when using 6 MeV-SFF (6 MeV-HDTSe) beam, respectively. CONCLUSIONS: The 6 MeV-SFF electron beam is feasible to provide similar TSET skin dose coverage at SSD ≥ 400 cm using a dual-field technique. The dose rate of the 6 MeV-SFF beam is about 4 times that of current available 6 MeV-HDTSe beams at treatment distances of 400-500 cm, which significantly shortens the treatment beam-on time and makes TSET available to patients in weakened conditions.


Assuntos
Elétrons , Dosagem Radioterapêutica , Espalhamento de Radiação , Pele , Elétrons/uso terapêutico , Humanos , Pele/efeitos da radiação , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Neoplasias Cutâneas/radioterapia
2.
Med Phys ; 51(6): 3850-3923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38721942

RESUMO

Brachytherapy utilizes a multitude of radioactive sources and treatment techniques that often exhibit widely different spatial and temporal dose delivery patterns. Biophysical models, capable of modeling the key interacting effects of dose delivery patterns with the underlying cellular processes of the irradiated tissues, can be a potentially useful tool for elucidating the radiobiological effects of complex brachytherapy dose delivery patterns and for comparing their relative clinical effectiveness. While the biophysical models have been used largely in research settings by experts, it has also been used increasingly by clinical medical physicists over the last two decades. A good understanding of the potentials and limitations of the biophysical models and their intended use is critically important in the widespread use of these models. To facilitate meaningful and consistent use of biophysical models in brachytherapy, Task Group 267 (TG-267) was formed jointly with the American Association of Physics in Medicine (AAPM) and The Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology (GEC-ESTRO) to review the existing biophysical models, model parameters, and their use in selected brachytherapy modalities and to develop practice guidelines for clinical medical physicists regarding the selection, use, and interpretation of biophysical models. The report provides an overview of the clinical background and the rationale for the development of biophysical models in radiation oncology and, particularly, in brachytherapy; a summary of the results of literature review of the existing biophysical models that have been used in brachytherapy; a focused discussion of the applications of relevant biophysical models for five selected brachytherapy modalities; and the task group recommendations on the use, reporting, and implementation of biophysical models for brachytherapy treatment planning and evaluation. The report concludes with discussions on the challenges and opportunities in using biophysical models for brachytherapy and with an outlook for future developments.


Assuntos
Braquiterapia , Planejamento da Radioterapia Assistida por Computador , Braquiterapia/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Modelos Biológicos , Dosagem Radioterapêutica , Relatório de Pesquisa , Fenômenos Biofísicos , Biofísica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA