Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Skin Res Technol ; 30(6): e13808, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899746

RESUMO

BACKGROUND: Dermatomyositis (DM) manifests as an autoimmune and inflammatory condition, clinically characterized by subacute progressive proximal muscle weakness, rashes or both along with extramuscular manifestations. Literature indicates that DM shares common risk factors with atherosclerosis (AS), and they often co-occur, yet the etiology and pathogenesis remain to be fully elucidated. This investigation aims to utilize bioinformatics methods to clarify the crucial genes and pathways that influence the pathophysiology of both DM and AS. METHOD: Microarray datasets for DM (GSE128470, GSE1551, GSE143323) and AS (GSE100927, GSE28829, GSE43292) were retrieved from the Gene Expression Omnibus (GEO) database. The weighted gene co-expression network analysis (WGCNA) was used to reveal their co-expressed modules. Differentially expression genes (DEGs) were identified using the "limma" package in R software, and the functions of common DEGs were determined by functional enrichment analysis. A protein-protein interaction (PPI) network was established using the STRING database, with central genes evaluated by the cytoHubba plugin, and validated through external datasets. Immune infiltration analysis of the hub genes was conducted using the CIBERSORT method, along with Gene Set Enrichment Analysis (GSEA). Finally, the NetworkAnalyst platform was employed to examine the transcription factors (TFs) responsible for regulating pivotal crosstalk genes. RESULTS: Utilizing WGCNA analysis, a total of 271 overlapping genes were pinpointed. Subsequent DEG analysis revealed 34 genes that are commonly found in both DM and AS, including 31 upregulated genes and 3 downregulated genes. The Degree Centrality algorithm was applied separately to the WGCNA and DEG collections to select the 15 genes with the highest connectivity, and crossing the two gene sets yielded 3 hub genes (PTPRC, TYROBP, CXCR4). Validation with external datasets showed their diagnostic value for DM and AS. Analysis of immune infiltration indicates that lymphocytes and macrophages are significantly associated with the pathogenesis of DM and AS. Moreover, GSEA analysis suggested that the shared genes are enriched in various receptor interactions and multiple cytokines and receptor signaling pathways. We coupled the 3 hub genes with their respective predicted genes, identifying a potential key TF, CBFB, which interacts with all 3 hub genes. CONCLUSION: This research utilized comprehensive bioinformatics techniques to explore the shared pathogenesis of DM and AS. The three key genes, including PTPRC, TYROBP, and CXCR4, are related to the pathogenesis of DM and AS. The central genes and their correlations with immune cells may serve as potential diagnostic and therapeutic targets.


Assuntos
Aterosclerose , Biomarcadores , Biologia Computacional , Dermatomiosite , Mapas de Interação de Proteínas , Humanos , Biologia Computacional/métodos , Dermatomiosite/genética , Dermatomiosite/imunologia , Aterosclerose/genética , Aterosclerose/imunologia , Biomarcadores/metabolismo , Biomarcadores/análise , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Bases de Dados Genéticas , Redes Reguladoras de Genes
2.
Int J Biol Macromol ; 269(Pt 2): 131969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697419

RESUMO

In this study, different concentrations of sodium alginate were compounded with pectin and phycocyanin to co-prepare composite hydrogel spheres (HP-PC-SA 0.2 %, 0.6 %, 1.0 %, 1.4 %) to evaluate the potential of the composite hydrogel spheres for the application as phycocyanin delivery carriers. The hydrogel spheres' physicochemical properties and bioaccessibility were assessed through scanning electron microscopy, textural analysis, drug-carrying properties evaluation, and in vitro and in vivo controlled release analysis in the gastrointestinal environment. Results indicated that higher sodium alginate concentrations led to smaller pore sizes and denser networks on the surface of hydrogel spheres. The textural properties of hydrogel spheres improved, and their water-holding capacity increased from 93.01 % to 97.97 %. The HP-PC-SA (1.0 %) formulation achieved the highest encapsulation rate and drug loading capacity, at 96.87 % and 6.22 %, respectively. Within the gastrointestinal tract, the composite hydrogel's structure significantly enhanced and protected the phycocyanin's digestibility, achieving a bioaccessibility of up to 88.03 %. In conclusion, our findings offer new insights into improving functionality and the effective use of phycocyanin via pectin-based hydrogel spheres.


Assuntos
Alginatos , Portadores de Fármacos , Hidrogéis , Pectinas , Ficocianina , Alginatos/química , Pectinas/química , Ficocianina/química , Hidrogéis/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Disponibilidade Biológica , Animais
3.
Front Pharmacol ; 14: 1290023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027018

RESUMO

Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.

4.
Front Pharmacol ; 14: 1091718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033624

RESUMO

Background: Type 2 diabetes mellitus (T2DM) is a clinical metabolic syndrome characterized by persistent hyperglycemia. Patients with T2DM are more likely to have carotid atherosclerosis (CAS), which can lead to dizziness, amaurosis or even stroke. Chinese herbal medicine (CHM) has shown possible efficacy and safety in treating T2DM patients with CAS. However, the existing evidence was not robust enough and the results were out of date. Objective: This meta-analysis aimed to summarize the current evidence and systematically evaluate the effects of CHM on carotid plaque, glucose and lipid metabolism and vascular endothelial parameters in T2DM patients with CAS, providing a reference for subsequent research and clinical practice. Methods: This study was registered in PROSPERO as CRD42022346274. Both Chinese and English databases were searched from their inceptions to 16 July 2022. All retrieved studies were screened according to inclusion and exclusion criteria. Randomized controlled trials (RCTs) using oral CHM to treat T2DM patients with CAS were included. The literature quality was assessed using the risk of bias assessment tool in the Cochrane Handbook. Data extraction was conducted on the selected studies. Review Manager 5.4 and Stata 16.0 were used for meta-analysis. Sources of heterogeneity were explored by meta-regression or subgroup analysis. Funnel plot and Egger's test were used to assess publication bias and the evidence quality was assessed by Grading of Recommendations Assessment, Development and Evaluation (GRADE). Results: 27 eligible studies, involving 2638 patients, were included in this study. Compared with western medicine (WM) alone, the addition of CHM was significantly better in improving carotid intima-media thickness (CIMT) [mean difference (MD) = -0.11mm, 95% confidence interval (CI): -0.15 to -0.07, p < 0.01], carotid plaque Crouse score [MD = -1.21, 95%CI: -1.35 to -1.07, p < 0.01], total cholesterol (TC) [MD = -0.34 mmol/L, 95%CI: -0.54 to -0.14, p < 0.01], triglyceride (TG) [MD = -0.26 mmol/L, 95%CI: -0.37 to -0.15, p < 0.01], low-density lipoprotein cholesterol (LDL-C) [MD = -0.36 mmol/L, 95%CI: -0.47 to -0.25, p < 0.01], high-density lipoprotein cholesterol (HDL-C) [MD = 0.22 mmol/L, 95%CI: 0.13 to 0.30, p < 0.01], glycated hemoglobin (HbA1c) [MD = -0.36%, 95%CI: -0.51 to -0.21, p < 0.01], fasting blood glucose (FBG) [MD = -0.33 mmol/L, 95%CI: -0.50 to -0.16, p < 0.01], 2-h postprandial glucose (2hPG) [MD = -0.52 mmol/L, 95%CI: -0.95 to -0.09, p < 0.01], homeostasis model assessment of insulin resistance (HOMA-IR) [standardized mean difference (SMD) = -0.88, 95%CI: -1.36 to -0.41, p < 0.01] and homeostasis model assessment of beta-cell function (HOMA-ß) [MD = 0.80, 95%CI: 0.51 to 1.09, p < 0.01]. Due to the small number of included studies, it is unclear whether CHM has an improving effect on nitric oxide (NO), endothelin-1 (ET-1), peak systolic velocity (PSV) and resistance index (RI). No serious adverse events were observed. Conclusion: Based on this meta-analysis, we found that in the treatment of T2DM patients with CAS, combined with CHM may have more advantages than WM alone, which can further reduce CIMT and carotid plaque Crouse score, regulate glucose and lipid metabolism, improve insulin resistance and enhance islet ß-cell function. Meanwhile, CHM is relatively safe. However, limited by the quality and heterogeneity of included studies, the efficacy and safety of CHM remain uncertain. More high-quality studies are still needed to provide more reliable evidence for the clinical application of CHM. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022346274.

5.
Molecules ; 28(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838978

RESUMO

The kidney is an important organ in the human body, with functions such as urine production, the excretion of metabolic waste, the regulation of water, electrolyte and acid-base balance and endocrine release. The morbidity and mortality of kidney diseases are increasing year by year worldwide, and they have become a serious public health problem. In recent years, natural products derived from fungi, plants and animals have become an important alternative source of treatment for kidney diseases because of their multiple pathways, multiple targets, safety, low toxicity and few side effects. Tanshinone IIA (Tan IIA) is a lipid-soluble diterpene quinone isolated from the Chinese herb Salvia miltiorrhiza, considered as a common drug for the treatment of cardiovascular diseases. As researchers around the world continue to explore its unknown biological activities, it has also been found to have a wide range of biological effects, such as anti-cancer, anti-oxidative stress, anti-inflammatory, anti-fibrotic, and hepatoprotective effects, among others. In recent years, many studies have elaborated on its renoprotective effects in various renal diseases, including diabetic nephropathy (DN), renal fibrosis (RF), uric acid nephropathy (UAN), renal cell carcinoma (RCC) and drug-induced kidney injury caused by cisplatin, vancomycin and acetaminophen (APAP). These effects imply that Tan IIA may be a promising drug to use against renal diseases. This article provides a comprehensive review of the pharmacological mechanisms of Tan IIA in the treatment of various renal diseases, and it provides some references for further research and clinical application of Tan IIA in renal diseases.


Assuntos
Abietanos , Nefropatias , Animais , Humanos , Abietanos/farmacologia , Extratos Vegetais/farmacologia , Rim , Nefropatias/tratamento farmacológico , Fibrose
6.
Biomed Pharmacother ; 157: 114059, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462309

RESUMO

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Glycemic control and lifestyle alterations cannot prevent the development of DPN; therefore, investigating effective treatments for DPN is crucial. Schwann cells (SCs) maintain the physiological function of peripheral nerves and promote the repair and regeneration of injured nerves. Inhibiting the apoptosis of SCs through various pathological pathways in a high-glucose environment plays an important role in developing DPN. Therefore, inhibiting the apoptosis of SCs can be a novel treatment strategy for DPN. Previous studies have indicated the potential of Chinese herbal medicine (CHM) in treating DPN. In this study, we have reviewed the effects of CHM (both monomers and extracts) on the apoptosis of SCs by interfering with the production of advanced glycation end products, oxidative stress, and endoplasmic reticulum stress pathological pathways. This review will demonstrate the potentialities of CHM in inhibiting apoptosis in SCs, providing new insights and perspectives for treating DPN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Medicamentos de Ervas Chinesas , Extratos Vegetais , Humanos , Apoptose , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/complicações , Glucose/metabolismo , Extratos Vegetais/farmacologia , Células de Schwann , Medicamentos de Ervas Chinesas/uso terapêutico
7.
Free Radic Biol Med ; 193(Pt 1): 202-212, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36228830

RESUMO

Ferroptosis is a novel form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxides to lethal levels, which is morphologically, biochemically, and genetically distinct from apoptosis, necroptosis, autophagy, and pyroptosis. Manganese play an important role in innate immunity and antitumor immunity. Many manganese-based nanomaterials induce tumor cell death by catalyzing the production of reactive oxygen species (ROS) within the tumor. However, the exact underlying mechanisms remain unclear. As research on ferroptosis advances and its regulatory mechanisms in tumors continue to be refined, more evidence has suggested that triggering ferroptosis in tumor cells is an effective strategy for tumor treatment. In this study, we found that administration of MnCl2 to tumor cells resulted in lipid peroxidation and increased the levels of mitochondrial ROS, consequently leading to ferroptosis. Dihydroorotate dehydrogenase (DHODH)-mediated ferroptosis defence is a targetable vulnerability in cancer. We show that MnCl2 downregulated DHODH expression in tumor cells, resulting in increased mitochondrial ROS and lipid peroxidation to induce ferroptosis. In addition, MnCl2 enhanced the phosphorylation levels of STING, TBK1, and IRF3 and upregulated the expression of type-I interferon (IFN), produced by the cGAS-STING signaling pathway. When inhibiting the cGAS-STING signaling pathway or type-I IFN, DHODH expression was restored, reversing lipid peroxidation and ROS production and rescuing MnCl2-induced ferroptosis.. Knockout of IFNAR1 or overexpression of DHODH weakens the antitumor effect of MnCl2. Mechanistically, these results revealed that Manganese treatment-activated cGAS-STING signaling promote mitochondrial lipid peroxidation and ROS production by releasing type-I IFNs that reduce DHODH function and thereby inducing ferroptosis in tumor cells. This may provide a new strategy to complement existing antitumor treatment regimens.


Assuntos
Ferroptose , Ferroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Manganês/farmacologia , Di-Hidro-Orotato Desidrogenase , Nucleotidiltransferases/metabolismo
8.
Front Endocrinol (Lausanne) ; 13: 990299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157449

RESUMO

Obesity-insulin resistance-ß-cells apoptosis" is an important trilogy of the pathogenesis of type 2 diabetes. With the global pandemic of obesity and diabetes, continuous research and development of new drugs focuses on the prevention of the pathological progress of these diseases. According to a recent study, the natural product kaempferol has excellent antidiabetic effects. Therefore, this review comprehensively summarized the frontier studies and pharmacological mechanisms of kaempferol in the treatment of diabetes. The successful research and development of kaempferol may yield a significant leap in the treatment of diabetes and its complications.


Assuntos
Produtos Biológicos , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Obesidade/tratamento farmacológico
9.
Langmuir ; 37(8): 2683-2692, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600180

RESUMO

We present a microamphiphilic surface to promote the formation of a thin, stable liquid film during condensation. The surface consists of a hydrophilic micropillar array with hydrophobic pillar tips and was made using photolithography, deep reactive ion etching, and liftoff. The hydrophobic tips prevent the liquid film from growing thick, thereby keeping the thermal resistance low without the cyclical growth and shedding process of dropwise condensation. The wetting behavior was modeled analytically, and the parameters required for film formation were determined and verified with ESEM experiments. When a surface filled with condensate and lacked a low-pressure zone for the water to leave, a rupture event occurred, and a large Wenzel droplet emerged to flood the surface irreversibly. A number of strategies were found to combat rupture events. Tilting the surface vertically and dipping in a liquid pool gave the condensate a low-pressure region and prevented rupture. Irreversible flooding can also be avoided by ensuring that the emerged droplet was a nonwetting, highly mobile Cassie droplet. Parameters for Cassie-stable amphiphilic surfaces were determined analytically, but the high aspect ratios required prevented the manufacture of these surfaces for this study. Instead a hierarchical design was presented that demonstrated emerged Cassie droplets without challenging the manufacturing limits of the microfabrication procedure. This design avoided Wenzel droplet flooding without the need for a designated low-pressure zone. Additionally, sites for Cassie emergence could be engineered by removing a single pillar from the array at a designated location.

10.
Biomed Pharmacother ; 129: 110400, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32570115

RESUMO

BACKGROUND: This study aimed to evaluate the role of Semen Brassicae, a common Traditional Chinese Medicine, in the treatment of hypertension. METHODS: Spontaneously hypertensive rats (SHRs) were divided into five groups and were gavaged with either distilled water, water-decocted solution from Semen Brassicae (0.5, 1 or 2 g/kg), or nifedipine (2.7 mg/kg). Normal rats gavaged with distilled water were used as a control. Systolic (SBP) and diastolic blood pressure (DBP) were measured using a non-invasive method. After 8 weeks of administration, all animals were anesthetized. Abdominal aortic serum was collected to measure serum factors; the thoracic aorta was collected for hematoxylin and eosin staining and western blot analysis. RESULTS: Both SBP and DBP were significantly decreased after Semen Brassicae treatment. Endothelin-1 and angiotensin II levels in abdominal aortic serum, as well as the levels of inflammatory factors interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha, were significantly decreased after Semen Brassicae treatment. The wall thickness of the thoracic aorta was significantly reduced after Semen Brassicae treatment. Nitric oxide level and the activity of superoxide dismutase and glutathione peroxidase were significantly increased, and malondialdehyde level was significantly decreased in the abdominal aortic serum after Semen Brassicae treatment. Semen Brassicae treatment increased the levels of peroxisome proliferator-activated receptor gamma and IκB-α and decreased the levels of intercellular adhesion molecule 1, monocyte chemoattractant protein-1, von Willebrand factor, p-IκB-α and p-p65 NF-κB. CONCLUSIONS: In conclusion, water-decocted solution from Semen Brassicae can decrease blood pressure, improve vascular remodeling, and attenuate oxidative stress and inflammation in SHRs.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Aorta Torácica/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hipertensão/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sinapis , Remodelação Vascular/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Hipertensivos/isolamento & purificação , Antioxidantes/isolamento & purificação , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/isolamento & purificação , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , NF-kappa B/metabolismo , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Transdução de Sinais , Sinapis/química
11.
Cancer Lett ; 433: 65-75, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29960049

RESUMO

Intestinal myeloid cells are not only essential for keeping local homeostasis, but also play an important role in regulating the occurrence of colitis and colitis-associated cancer (CAC). In these diseases, the manner in which the myeloid cells work and which molecular pathways influence them are still not fully understood. In our study, we discovered that MyD88 signaling in colonic myeloid cells participates in the development of CAC. Myeloid MyD88-deficient mice showed greater susceptibility to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CAC, as evidenced by the increase in the number and sizes of tumors. Myeloid MyD88 deletion markedly increased production of pro-inflammatory and pro-tumor cytokines; recruitment of more IL-1ß producing-neutrophils in colon from bone marrow; increased in epithelial cell apoptosis and decreased in epithelial cell proliferation; enhancement of colon mucosal expression of COX-2, p-STAT3, ß-catenin, and cyclinD1; induction of further DNA damage and ß-catenin mutation. To sum up, these results suggest that myeloid MyD88 signaling protects the intestine from tumorigenesis during the development of CAC.


Assuntos
Adenocarcinoma/patologia , Azoximetano/efeitos adversos , Neoplasias do Colo/patologia , Sulfato de Dextrana/efeitos adversos , Células Mieloides/patologia , Fator 88 de Diferenciação Mieloide/genética , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/genética , Animais , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Citocinas/metabolismo , Dano ao DNA , Técnicas de Inativação de Genes , Humanos , Camundongos , Mutação , Células Mieloides/química , Células Mieloides/efeitos dos fármacos , Transdução de Sinais , Carga Tumoral , beta Catenina/genética
12.
Vaccine ; 36(18): 2435-2441, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29588119

RESUMO

In recent years, directed evolution has emerged as an efficient tool to develop and identify novel protein variants. Eimeria tenella microneme-2 (EtMIC2) is a promising vaccine candidate for use against E. tenella infection; however, it only yields partial protection. The present study aimed to improve the immunogenicity and protective efficacy of EtMIC2 through random mutagenesis. Mutagenesis gene libraries of EtMIC2 were generated using error-prone polymerase chain reaction (epPCR), and the corresponding variant proteins were displayed on the yeast cell surface. Variant EtMIC2 proteins with high immunogenicity were screened through fluorescence-activated cell sorting (FACS) based on the affinity between polyclonal antibodies and antigens. Seven effective variant proteins were screened out and heterogeneously expressed in Escherichia coli as subunit vaccines. The protective efficacy of the variant proteins against E. tenella infections was then evaluated in chicken. Two variant proteins (1130 and 2119) displayed higher immunogenicity and protective efficacy than the wild-type EtMIC2 protein against E. tenella infections, increasing body weight gains and significantly decreasing lesion scores and fecal oocyst shedding, and increasing sIgA antibody production and lymphocyte proliferation. These variants displayed potential for use in the development of subunit vaccines for coccidiosis in chickens. The present results also indicate that directed evolution technology is useful for improving the immunogenicity and protective efficacy of parasite antigens.


Assuntos
Antígenos de Protozoários/imunologia , Coccidiose/veterinária , Eimeria tenella/imunologia , Proteínas Mutantes/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/genética , Proliferação de Células , Técnicas de Visualização da Superfície Celular , Galinhas , Coccidiose/prevenção & controle , Eimeria tenella/genética , Escherichia coli/genética , Citometria de Fluxo , Imunoglobulina A Secretora/análise , Linfócitos/imunologia , Mutagênese , Proteínas Mutantes/administração & dosagem , Proteínas Mutantes/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Leveduras/genética
13.
Exp Parasitol ; 155: 1-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25956946

RESUMO

In the present study, three different live oral vaccines using the EBY100/pCTCON-2 yeast surface display system with different Eimeria tenella microneme-1 (EtMic1) protein domain recombination were constructed and their protective efficacies against homologous challenge were compared by evaluating the body weight gains, relative growth rate, cecal lesion scores, oocyst output, oocyst decrease ratio, anti-coccidial index, the serum antibody levels and the proliferation ability of blood lymphocytes. The results indicated that all the three constructed live oral vaccines expressing different EtMic1 polypeptides provided excellent protection against homologous challenge by significantly increasing weight gains, reducing cecal lesions, achieving a high ACI, elevating specific antibody response and splenocyte proliferation ability compared with controls. The yeasts displaying the EtMic1 polypeptide-III (expressed TSP-2, TSP-3 and TSP-4 domains) provided better protection against challenge than the yeasts displaying either the EtMic1 polypeptide-I (expressed I-domain, TSP-1 and TSP-2) or polypeptide-II (expressed I-domain and all the five TSP domains) did. Considering the exclusion of antibiotic resistant gene in the system, the strain EBY100 of Saccharomyces cerevisiae may be a better choice for coccidian antigen delivery.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Eimeria tenella/imunologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas Protozoárias , Administração Oral , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Relação CD4-CD8 , Coccidiose/mortalidade , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Eimeria tenella/genética , Citometria de Fluxo , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/química , Vacinas Protozoárias/genética , Distribuição Aleatória , Saccharomyces cerevisiae , Organismos Livres de Patógenos Específicos , Taxa de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/genética
14.
Parasitol Res ; 113(11): 4151-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25164275

RESUMO

Microneme proteins (MICs) of Eimeria species are critical for motility of the parasite, identification and binding of host cell-surface proteins, invasion of host cells, and intracellular survival. The microneme protein 1 (EtMIC1) and 2 (EtMIC2) from Eimeria tenella have a putative function in parasite adhesion to the host cell to initiate an invasion process. Previous studies indicated that the EtMIC1 and EtMIC2 proteins form a complex that play roles during attachment to and penetration of the host cell. Numerous studies demonstrated that both the EtMIC1 and EtMIC2 are important microneme proteins which are abundantly expressed in sporozoites and schizogony stages. But the expression of EtMIC1 and EtMIC2 in the gametogony stage is unknown. To investigate the precise roles of EtMIC1 and EtMIC2 in host-parasite interactions and expressions in the gametogony stage of E. tenella, we generated five mouse monoclonal antibodies (MAbs) which recognize the EtMIC1 and EtMIC2 proteins and investigated expressions of EtMIC1 and EtMIC2 proteins in later endogenous developmental stages, particularly focused on the gametogony phase using the specific anti-EtMIC1 and anti-EtMIC2 MAbs produced in this work. Our results showed that both EtMIC1 and EtMIC2 proteins are expressed in all developmental stages including the gametogony stage. To our knowledge, this is the first report that the EtMIC1 and EtMIC2 proteins are expressed in the gametogony stage of E. tenella.


Assuntos
Anticorpos Monoclonais Murinos/química , Eimeria tenella , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Animais , Feminino , Interações Hospedeiro-Parasita , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Esporozoítos
15.
Vaccine ; 32(16): 1869-76, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24530147

RESUMO

S. cerevisiae is generally regarded as safe and benign organism and its surface display system may be used as a unique eukaryotic expression system that is suitable for expressing eukaryotic antigen. In addition to the convenience of vaccine delivery, the yeast cell wall has been shown to enhance the innate immunity when immunized with the yeast live oral vaccine. In the present study, we expressed the chicken coccidian E. tenella EtMic2, a microneme protein, on the surface of the S. cerevisiae and evaluated it as a potential oral vaccine for chicken against E. tenella challenge. The protective efficacy against a homologous challenge was evaluated by body weight gains, lesion scores and fecal oocyst shedding. The results showed that the live oral vaccine can improve weight gains, reduced cecal pathology and lower oocyst fecal shedding compared with non immunized controls. In addition, the yeast oral vaccine could stimulate humoral as well as cell mediate immune responses. These results suggested that EtMic2 displayed on the cell surface of S. cerevisiae could be used as potential live vaccine against chicken coccidiosis.


Assuntos
Coccidiose/veterinária , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Saccharomyces cerevisiae , Administração Oral , Animais , Anticorpos Antiprotozoários/sangue , Ceco/imunologia , Ceco/patologia , Técnicas de Visualização da Superfície Celular , Galinhas/imunologia , Coccidiose/prevenção & controle , Citocinas/imunologia , Eimeria tenella/imunologia , Fezes/parasitologia , Imunidade Celular , Imunidade Humoral , Imunoglobulina A Secretora/imunologia , Masculino
16.
J Biochem ; 145(3): 355-64, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19112180

RESUMO

The activity and stability of mushroom tyrosinase were studied in ionic liquid (IL)-containing aqueous systems. The effect of three ILs ([BMIm][PF(6)], [BMIm][BF(4)]), and [BMIm][MeSO(4)], where [BMIm] = 1-butyl-3-methylimidazolium) and their inorganic salts (KMeSO(4), KPF(6), and NaBF(4)) on the enzyme performance was investigated by comparing the kinetic (such as K(m), V(max), optimal pH and temperature, and activation energy) and thermostability parameters (including half-lives, deactivation constants, activation energies for enzyme deactivation, DeltaG*, DeltaH*, and DeltaS*) of the enzyme in the absence and presence of the ILs and their anions. Both the three ILs and their inorganic salts were able to trigger enzyme activation. The enzyme could be stabilized by addition of KMeSO(4) and NaBF(4) but destabilized by the presence of all the three ILs. The substrate selectivity of the enzyme was unchanged. The effect of ILs on enzyme performance can be largely attributed to their ionic nature via interaction with the enzyme structure, the substrate, and the water molecules associated with the enzyme, depending on their kosmotropocity, nucleophilicity, and H-bond basicity. The different influences brought from the ILs and their associated ions indicate the cooperative functioning of both cation and anion of the IL in affecting the enzyme performance.


Assuntos
Agaricales/enzimologia , Líquidos Iônicos/farmacologia , Monofenol Mono-Oxigenase/metabolismo , Ânions , Biocatálise/efeitos dos fármacos , Soluções Tampão , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Líquidos Iônicos/química , Cinética , Oxirredução/efeitos dos fármacos , Sais/farmacologia , Soluções , Especificidade por Substrato/efeitos dos fármacos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA