Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
Sleep Breath ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730204

RESUMO

STUDY OBJECTIVES: Artificial intelligence (AI) is quickly advancing in the field of sleep medicine, which bodes well for the potential of actual clinical use. In this study, an analysis of the 2nd China Intelligent Sleep Staging Competition was conducted to gain insights into the general level and constraints of AI-assisted sleep staging in China. METHODS: The outcomes of 10 teams from the children's track and 13 teams from the adult track were investigated in this study. The analysis included overall performance, differences between five different sleep stages, variations across subjects, and performance during stage transitions. RESULTS: The adult track's accuracy peaked at 80.46%, while the children's track's accuracy peaked at 88.96%. On average, accuracy rates stood at 71.43% for children and 68.40% for adults. All results were produced within a mere 5-min timeframe. The N1 stage was prone to misclassification as W, N2, and R stages. In the adult track, significant differences were apparent among subjects (p < 0.05), whereas in the children's track, such differences were not observed. Nonetheless, both tracks experienced a performance decline during stage transitions. CONCLUSIONS: The computational speed of AI is remarkably fast, simultaneously holding the potential to surpass the accuracy of physicians. Improving the machine learning model's classification of the N1 stage and transitional periods between stages, along with bolstering its robustness to individual subject variations, is imperative for maximizing its ability in assisting clinical scoring.

2.
3D Print Addit Manuf ; 11(2): e655-e665, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689901

RESUMO

This article investigates a laser-directed energy deposition additive manufacturing (AM) method, based on coaxial powder feeding, for preparing quartz glass. Through synergistic optimization of line deposition and plane deposition experiments, key parameters of laser coaxial powder feeding AM were identified. The corresponding mechanical properties, thermal properties, and microstructure of the bulk parts were analyzed. The maximum mechanical strength of the obtained quartz glass element reached 72.36 ± 5.98 MPa, which is ca. 95% that of quartz glass prepared by traditional methods. The thermal properties of the obtained quartz glass element were also close to those prepared by traditional methods. The present research indicates that one can use laser AM technology that is based on coaxial powder feeding to form quartz glass with high density and good thermodynamic properties. Such quartz glass has substantial potential in, for example, optics and biomedicine.

3.
Cancer Lett ; : 216956, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735381

RESUMO

Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 levels negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.

4.
Int Wound J ; 21(4): e14834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650426

RESUMO

A meta-analysis was conducted comprehensively to investigate the impact of evidence-based nursing (EBN) interventions on pressure injury (PI) in the intensive care unit (ICU) patients. Computer searches were performed, from databases inception to November 2023, in Wanfang, PubMed, China National Knowledge Infrastructure, Google Scholar, Embase, and Cochrane Library for randomized controlled trials (RCTs) on the application of EBN interventions in ICU patients. Two independent researchers conducted screenings of the literature, extracted data, and carried out quality evaluations. Stata 17.0 software was employed for data analysis. Overall, 25 RCTs, involving 2494 ICU patients, were included. It was found that compared to conventional care methods, the implementation of EBN interventions in ICU patients markedly decreased the occurrence of PI (odds ratio [OR]: 0.22, 95% confidence interval [CI]: 0.17-0.30, p < 0.001), delayed the onset time of pressure ulcers (standardized mean difference [SMD]: -1.61, 95% CI: -2.00 to -1.22, p < 0.001), and also improved nursing satisfaction (OR: 1.18, 95% CI: 1.14-1.23, p < 0.001). Our findings suggest the implementation of EBN interventions in the care of PI in ICU patients is highly valuable, can reduce the occurrence of PI, can delay the time of appearance, and is associated with relatively higher nursing satisfaction, making it worthy of promotion.


Assuntos
Enfermagem Baseada em Evidências , Unidades de Terapia Intensiva , Úlcera por Pressão , Úlcera por Pressão/enfermagem , Úlcera por Pressão/prevenção & controle , Humanos , Enfermagem Baseada em Evidências/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Int J Nanomedicine ; 19: 3333-3365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617796

RESUMO

Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer treatment.


Assuntos
Fibroblastos Associados a Câncer , Nanopartículas , Neoplasias , Imunoterapia , Nanomedicina , Nanotecnologia , Neoplasias/tratamento farmacológico
6.
Eur J Radiol ; 175: 111438, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38613869

RESUMO

OBJECTIVE: To establish nomograms integrating multiparametric MRI radiomics with clinical-radiological features to identify the responders and non-responders to induction chemotherapy (ICT) in nasopharyngeal carcinoma (NPC). METHODS: We retrospectively analyzed the clinical and MRI data of 168 NPC patients between December 2015 and April 2022. We used 3D-Slicer to segment the regions of interest (ROIs) and the "Pyradiomic" package to extract radiomics features. We applied the least absolute shrinkage and selection operator regression to select radiomics features. We developed clinical-only, radiomics-only, and the combined clinical-radiomics nomograms using logistic regression analysis. The receiver operating characteristic curves, DeLong test, calibration, and decision curves were used to assess the discriminative performance of the models. The model was internally validated using 10-fold cross-validation. RESULTS: A total of 14 optimal features were finally selected to develop a radiomic signature, with an AUC of 0.891 (95 % CI, 0.825-0.946) in the training cohort and 0.837 (95 % CI, 0.723-0.932) in the testing cohort. The nomogram based on the Rad-Score and clinical-radiological factors for evaluating tumor response to ICT yielded an AUC of 0.926 (95 % CI, 0.875-0.965) and 0.901 (95 % CI, 0.815-0.979) in the two cohorts, respectively. Decision curves demonstrated that the combined clinical-radiomics nomograms were clinically useful. CONCLUSION: Nomograms integrating multiparametric MRI-based radiomics and clinical-radiological features could non-invasively discriminate ICT responders from non-responders in NPC patients.

7.
Transl Lung Cancer Res ; 13(3): 453-464, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38601436

RESUMO

Background: Primary pulmonary lymphoepithelioma-like carcinoma (PPLELC) is a rare yet aggressive malignancy. This study aims to investigate a deep learning model based on hematological indices, referred to as haematological indices-based signature (HIBS), and propose multivariable predictive models for accurate prognosis prediction and assessment of therapeutic response to immunotherapy in PPLELC. Methods: This retrospective study included 117 patients with PPLELC who received immunotherapy and were randomly divided into a training (n=82) and a validation (n=35) cohort. A total of 41 hematological features were extracted from routine laboratory tests and the least absolute shrinkage and selection operator (LASSO) algorithm were utilized to establish the HIBS. Additionally, we developed a nomogram using the HIBS and clinical characteristics through multivariate Cox regression analysis. To evaluate the nomogram's predictive performance, we used calibration curves and calculated the time-dependent area under the curve (AUC). Kaplan-Meier survival analysis was performed to estimate progression-free survival (PFS) in both cohorts. Results: The proposed HIBS comprised 14 hematological features and showed that patients who experienced disease progression had significantly higher HIBS scores compared to those who did not progress (P<0.001). Five prognostic factors, including HIBS, tumor-node-metastasis (TNM) stage, presence of bone metastasis and the specific immunotherapy regimen, were found to be independent factors and were used to construct a nomogram, which effectively categorized PPLELC patients into a high-risk and a low-risk group, with patients in the high-risk patients demonstrating worse PFS (7.0 vs. 18.0 months, P<0.001) and lower overall response rates (22.2% vs. 52.7%, P<0.001). The nomogram showed satisfactory discrimination for PFS, with AUC values of 0.837 and 0.855 in the training and validation cohorts, respectively. Conclusions: The HIBS-based nomogram could effectively predict the PFS and response of patients with PPLELC regarding immunotherapy and serve as a valuable tool for clinical decision making.

8.
Nanoscale ; 16(18): 8708-8738, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38634521

RESUMO

Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.


Assuntos
Membrana Celular , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Membrana Celular/metabolismo , Membrana Celular/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Animais , Microambiente Tumoral/efeitos dos fármacos
9.
Front Endocrinol (Lausanne) ; 15: 1330629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532897

RESUMO

Background: L-carnitine therapy for idiopathic sperm abnormalities exhibits variable effectiveness, and currently, there are no established criteria to predict patient response. This study investigated correlations between seminal plasma markers and semen parameters to identify biomarkers that can guide indications for L-carnitine therapy indications in patients with idiopathic sperm abnormalities. Methods: A retrospective review was conducted on 223 male patients with idiopathic oligoasthenoteratospermia, who sought medical attention at our clinic between January 2020 and October 2022. These patients underwent a pretreatment seminal plasma biochemical analysis, followed by a three-month continuous L-carnitine treatment. The correlation between seminal plasma biochemical parameters and pretreatment semen parameters was analyzed. Semen quality was compared between cases with normal and abnormal seminal plasma biochemical parameters, both pretreatment and posttreatment. The correlation between the changes in semen parameters after treatment and seminal plasma biochemical parameters were investigated. Results: Correlation analyses revealed significant associations between all pretreatment semen parameters and seminal plasma biochemical markers, except for liquefying time and the ratio of normal morphology. Subgroup analysis, stratified by seminal fructose, zinc, citric acid, and neutral glycosidase levels, demonstrated that abnormal groups exhibited significantly different levels of semen parameters compared with the normal groups. The changing difference and changing ratio in the ratio of forward motile sperm showed a negative correlation with seminal fructose levels (r=-0.165 and -0.144). The changing difference in semen volume was negatively correlated with the level of seminal neutral glycosidase (r=-0.158). The changing ratio in semen volume, sperm concentration, total sperm count, and count of forward motile sperm all exhibited negative correlations with the levels of seminal neutral glycosidase (range from -0.178 to -0.224). Conclusion: Seminal plasma biochemical markers, particularly fructose and neutral glycosidase, may serve as valuable indicators for determining the eligibility of patients with idiopathic sperm abnormalities for L-carnitine therapy.


Assuntos
Infertilidade Masculina , Sêmen , Masculino , Humanos , Sêmen/química , Análise do Sêmen , Carnitina , Motilidade dos Espermatozoides , Biomarcadores/análise , Frutose , Glicosídeo Hidrolases
10.
Sci Total Environ ; 925: 171682, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494012

RESUMO

Constructed wetlands (CWs) have been developed rapidly as a sustainable water treatment technique. However, the capability of CWs for remediating the contaminated water based on toxicity assessment remains largely unknown. Four surface flow CWs and two integrated surface-subsurface flow CWs, from five cities in central and eastern region of China were evaluated, concerning the adverse effects of effluents and the toxicity reduction efficiency. Human bone marrow mesenchymal stem cells (hBMSCs) were employed as a human relevant in vitro model. The influent extractions caused cytotoxicity in a dose-dependent manner. The non-cytotoxic dilutions of the influents enhanced the genotoxicity marker γ-H2AX and reactive oxygen species levels. In addition, the influent repressed the osteogenic and neurogenic differentiation, and stimulated the adipogenic differentiation. Cytotoxicity of the contaminated water was reduced by 54 %-86 % after treatment with CWs. CWs were effective to remove part of the sub-lethal effects, with lower reduction than cytotoxicity. The integrated biomarker response (IBR) value of the effluents from the six CWs is lower than that of four secondary and one tertiary wastewater treatment plants. The IBR of the six CWs influents were in the range of 8.6-10.6, with a reduction of 15-50 % after the pollution restoration in CWs. The two integrated surface-subsurface flow CWs achieved higher IBR removal than the four surface flow CWs, possibly due to improved treatment effects by the combined systems. Cytotoxic and genotoxic effects of polar fractions in the CW effluents were stronger than the medium-polar and the non-polar fractions. Besides, PPARγ agonists present in the effluents played crucial roles and ERα agonists may make modest contributions. The present study enhances understanding of the role of CWs in achieving safe wastewater reclamation and provides evidence for further improving toxicity reduction in CWs performance.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Humanos , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Águas Residuárias/toxicidade , Poluição da Água
11.
Environ Res ; 251(Pt 2): 118722, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38499223

RESUMO

The key to the resource recycling of saline wastes in form of polyhydroxyalkanoates (PHA) is to enrich mixed cultures with salt tolerance and PHA synthesis ability. However, the comparison of saline sludge from different sources and the salt tolerance mechanisms of salt-tolerant PHA producers need to be clarified. In this study, three kinds of activated sludge from different salinity environments were selected as the inoculum to enrich salt-tolerant PHA producers under aerobic dynamic feeding (ADF) mode with butyric acid dominated mixed volatile fatty acid as the substrate. The maximum PHA content (PHAm) reached 0.62 ± 0.01, 0.62 ± 0.02, and 0.55 ± 0.03 g PHA/g VSS at salinity of 0.5%, 0.8%, and 1.8%, respectively. Microbial community analysis indicated that Thauera, Paracoccus, and Prosthecobacter were dominant salt-tolerant PHA producers at low salinity, Thauera, NS9_marine, and SM1A02 were dominant salt-tolerant PHA producers at high salinity. High salinity and ADF mode had synergistic effects on selection and enrichment of salt-tolerant PHA producers. Combined correlation network with redundancy analysis indicated that trehalose synthesis genes and betaine related genes had positive correlation with PHAm, while extracellular polymeric substances (EPS) content had negative correlation with PHAm. The compatible solutes accumulation and EPS secretion were the main salt tolerance mechanisms of the PHA producers. Therefore, adding compatible solutes is an effective strategy to improve PHA synthesis in saline environment.

12.
ACS Appl Mater Interfaces ; 16(11): 14333-14344, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38449445

RESUMO

Metal-organic framework (MOF)-modified biochars (BC) have gained recognition as potent adsorbents for phosphate. However, essential insights into the electronic interfacial state of the MOFs remain lacking. In this study, we propose a novel topological transformation strategy to directionally regulate the interfacial electronic states of BC/MOFs composites. The optimized BC/MOFs exhibited an excellent selective phosphate adsorption capacity of 188.68 mg·g-1, coupled with rapid sorption kinetics of 6.81 mg·(g·min0.5)-1 in simulated P-laden wastewater. When challenged with real bioeffluent, such efficacy was still maintained (5 mg·L-1, 25.92 mg·g-1). This superior performance was due to the Fe(III) → Fe(II) transition, promoting electron mobility and leading to the anchoring of Mg(II) to form specific coordination unsaturated sites (Mg-CUS) for phosphate adsorption. Importantly, the simultaneous regulation of binary defects further enhances electron mobility, resulting in the formation of sp3 unequal hybrid orbitals with a stronger internal coupling capability between Mg 3s in Mg-CUS and O 2p in phosphate. Furthermore, the high electron affinity of Mg effectively promotes electron cycling, endowing BC/MOFs with a distinct self-healing capability to facilitate phosphate desorption. The outcomes of this study provide novel perspectives for electronic regulated phosphate adsorption.

13.
Mar Pollut Bull ; 201: 116227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531204

RESUMO

Coral reefs worldwide have faced extensive damage due to natural catastrophes and anthropogenic disturbances.The decline can cause their widespread collapse and an inability to recover from natural disturbances, highlighting the urgent need for their protection. This study conducted an extensive ecological condition assessment of seven coral reef regions in China's offshore. Our findings revealed the presence of 204 species of scleractinian corals belonging to 16 families. Massive corals were the predominant reef-building corals in all regions. The degradation of coral reef ecosystems was apparent in the present compared to historical reef conditions. The ecosystem suffered varying degrees of damage in surveyed regions according to a novel assessment approach, impling more effective measures should be taken to mitigate the local pressures. Our research establishes a baseline for understanding the status of coral reefs that can be used in future and provides a crucial foundation to designate protective zones for their conservation.


Assuntos
Antozoários , Recifes de Corais , Animais , China , Ecossistema , Água
14.
Antiviral Res ; 225: 105875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552910

RESUMO

The DEAD-box (DDX) family comprises RNA helicases characterized by the conserved sequence D(Asp)-E(Glu)-A(Ala)-D(Asp), participating in various RNA metabolism processes. Some DDX family members have been identified for their crucial roles in viral infections. In this study, RNAi library screening of the DDX family unveiled the antiviral activity of DDX20. Knockdown of DDX20 enhanced the replication of viruses such as vesicular stomatitis virus (VSV) and herpes simplex virus type I (HSV-1), while overexpression of DDX20 significantly diminished the replication level of these viruses. Mechanistically, DDX20 elevated the phosphorylation level of IRF3 induced by external stimuli by facilitating the interaction between TBK1 and IRF3, thereby promoting the expression of IFN-ß. The increased IFN-ß production, in turn, upregulated the expression of interferon-stimulated genes (ISGs), including Cig5 and IFIT1, thereby exerting the antiviral effect. Finally, in an in vivo infection study, Ddx20 gene-deficient mice exhibited increased susceptibility to viral infection. This study provides new evidence that DDX20 positively modulates the interferon pathway and restricts viral infection.


Assuntos
Herpesvirus Humano 1 , Interferon Tipo I , Viroses , Animais , Camundongos , Interferons/metabolismo , Interferon beta/metabolismo , Transdução de Sinais , Diclorodifenil Dicloroetileno/metabolismo , Replicação Viral , Herpesvirus Humano 1/genética , Antivirais/metabolismo , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteína DEAD-box 20/metabolismo
15.
J Evid Based Med ; 17(1): 207-223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530771

RESUMO

Postoperative gastrointestinal disorder (POGD) was a common complication after surgery under anesthesia. Strategies in combination with Traditional Chinese Medicine and Western medicine showed some distinct effects but standardized clinical practice guidelines were not available. Thus, a multidisciplinary expert team from various professional bodies including the Perioperative and Anesthesia Professional Committees of the Chinese Association of Integrative Medicine (CAIM), jointly with Gansu Province Clinical Research Center of Integrative Anesthesiology/Anesthesia and Pain Medical Center of Gansu Provincial Hospital of Traditional Chinese Medicine and WHO Collaborating Center for Guideline Implementation and Knowledge Translation/Chinese Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) Center/Gansu Provincial Center for Medical Guideline Industry Technology/Evidence-based Medicine Center of Lanzhou University, was established to develop evidence-based guidelines. Clinical questions (7 background and 12 clinical questions) were identified through literature reviews and expert consensus meetings. Based on systematic reviews/meta-analyses, evidence quality was analyzed and the advantages and disadvantages of interventional measures were weighed with input from patients' preferences. Finally, 20 recommendations were developed through the Delphi-based consensus meetings. These recommendations included disease definitions, etiologies, pathogenesis, syndrome differentiation, diagnosis, and perioperative prevention and treatment.


Assuntos
Gastroenteropatias , Medicina Integrativa , Humanos , Medicina Tradicional Chinesa , Gastroenteropatias/prevenção & controle , Medicina Baseada em Evidências
16.
Med Phys ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452276

RESUMO

BACKGROUND: Ring artifact is a common problem in Computed Tomography (CT), which can lead to inaccurate diagnoses and treatment plans. It can be caused by various factors such as detector imperfections, anti-scatter grids, or other nonuniform filters placed in the x-ray beam. Physics-based corrections for these x-ray source and detector non-uniformity, in general cannot completely get rid of the ring artifacts. Therefore, there is a need for a robust method that can effectively remove ring artifacts in the image domain while preserving details. PURPOSE: This study aims to develop an effective method for removing ring artifacts from reconstructed CT images. METHODS: The proposed method starts by converting the reconstructed CT image containing ring artifacts into polar coordinates, thereby transforming these artifacts into stripes. Relative Total Variation is used to extract the image's overall structural information. For the efficient restoration of intricate details, we introduce Directional Gradient Domain Optimization (DGDO) and design objective functions that make use of both the image's gradient and its overall structure. Subsequently, we present an efficient analytical algorithm to minimize these objective functions. The image obtained through DGDO is then transformed back into Cartesian coordinates, finalizing the ring artifact correction process. RESULTS: Through a series of synthetic and real-world experiments, we have effectively demonstrated the prowess of our proposed method in the correction of ring artifacts while preserving intricate details in reconstructed CT images. In a direct comparison, our method has exhibited superior visual quality compared to several previous approaches. These results underscore the remarkable potential of our approach for enhancing the overall quality and clinical utility of CT imaging. CONCLUSIONS: The proposed method offers an analytical solution for removing ring artifacts from CT images while preserving details. As ring artifacts are a common problem in CT imaging, this method has high practical value in the medical field. The proposed method can improve image quality and reduce the difficulty of disease diagnosis, thereby contributing to better patient care.

17.
JACS Au ; 4(2): 592-606, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425908

RESUMO

Li-doped high-entropy oxides (Li-HEO) are promising electrode materials for Li-ion batteries. However, their electrical conduction in a wide range of temperatures and/or at high pressure is unknown, hindering their applications under extreme conditions. Especially, a clear understanding of the conduction mechanism is needed. In this work, we determined the carrier type of several Li-doped (MgCoNiCuZn)O semiconductor compounds and measured their electrical conduction at temperatures 79-773 K and/or at pressures up to 50 GPa. Three optical band gaps were uncovered from the UV-vis-NIR absorption measurements, unveiling the existence of defect energy levels near the valence band of p-type semiconductors. The Arrhenius-like plot of the electrical conductivity data revealed the electronic conduction in three temperature regions, i.e., the ionization region from 79 to 170 K, the extrinsic region from ∼170 to 300 K, and the intrinsic region at ≥300 K. The closeness of the determined electronic band gap and the second optical band gap suggests that the conduction electrons in the intrinsic region originate from a thermal excitation from the defect energy levels to the conduction band, which determines the electronic conductivity. It was also found that at or above room temperature, ionic conduction coexists with electronic conduction with a comparable magnitude at ambient pressure and that the intrinsic conduction mechanism also operates at high pressures. These findings provide us a fundamental understanding of the band structure and conduction mechanism of Li-HEO, which would be indispensable to their applications in new technical areas.

18.
J Gene Med ; 26(3): e3667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442944

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer with relatively high mortality worldwide. Serine peptidase inhibitor Kazal-type 5 (SPINK5) is reported to be downregulated in ESCC. However, its explicit role in ESCC remains further investigation. METHODS: The tumor tissues and adjacent non-cancerous tissues were obtained from 196 patients with ESCC for the determination of SPINK5 mRNA levels. Additionally, the relationship between SPINK5 mRNA levels and clinicopathological features of ESCC patients was explored. The effects of SPINK5 on the invasion and migration of ESCC cells were assessed using Transwell assays. Furthermore, SPINK5 mRNA and LEKTI protein were measured in ESCC cell lines after treatment with poly (I:C), lipopolysaccharide (LPS) or unmethylated CpG DNA. Moreover, the correlation between expression of SPINK5 and nuclear factor-kappa B (NF-κB) signaling pathway-related genes was analyzed in the TCGA-ESCC cohort, and the effects of SPINK5 on NF-κB transcription was analyzed using a luciferase reporter gene assay. Finally, the correlations between SPINK5 and infiltration of immune cells, immune scores, stromal scores and ESTIMATE (i.e., Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) scores were explored. RESULTS: SPINK5 mRNA levels were downregulated in tumor tissues, which was significantly correlated with higher lymph node metastases. Overexpressed SPINK5 inhibited cell invasion and migration in ESCC cell lines. Mechanistically, LPS-induced activation of Toll-like receptor 4 (TLR4) decreased SPINK5 mRNA and LEKTI in KYSE150 and KYSE70 cells. Spearman correlation analysis revealed that SPINK5 mRNA was significantly negatively correlated with a total of seven NF-κB signaling pathway-related genes in TCGA-ESCC patients. Moreover, downregulation of SPINK5 increased and upregulation of SPINK5 decreased the activity of the NF-κB promoter in HEK293T cells. Finally, immune cells infiltration analysis revealed that SPINK5 was significantly correlated with the infiltration of various immune cells, stromal scores, immune scores and ESTIMATE scores. CONCLUSIONS: SPINK5 plays critical roles in the TLR4/NF-κB pathway and immune cells infiltration, which might contribute to the ESCC metastasis. The findings of the present study may provide a promising biomarker for the diagnosis and treatment of esophageal squamous cell carcinoma.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Inibidor de Serinopeptidase do Tipo Kazal 5 , Humanos , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Células HEK293 , Lipopolissacarídeos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Receptor 4 Toll-Like/metabolismo
19.
Nat Commun ; 15(1): 2040, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448429

RESUMO

Metal-organic framework (MOF) glasses are an emerging class of glasses which complement traditional inorganic, organic and metallic counterparts due to their hybrid nature. Although a few zeolitic imidazolate frameworks have been made into glasses, how to melt and quench the largest subclass of MOFs, metal carboxylate frameworks, into glasses remains challenging. Here, we develop a strategy by grafting the zwitterions on the carboxylate ligands and incorporating organic acids in the framework channels to enable the glass formation. The charge delocalization of zwitterion-acid subsystem and the densely filled channels facilitate the coordination bonding mismatch and thus reduce the melting temperature. Following melt-quenching realizes the glass formation of a family of carboxylate MOFs (UiO-67, UiO-68 and DUT-5), which are usually believed to be un-meltable. Our work opens up an avenue for melt-quenching porous molecular solids into glasses.

20.
J Nanobiotechnology ; 22(1): 97, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454419

RESUMO

Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Humanos , Piroptose , Imunoterapia , Autofagia , Inibidores de Checkpoint Imunológico , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA