Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 834: 155361, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460793

RESUMO

Organophosphate esters (OPEs) in the environment have been the focus of increasing attention due to their ubiquity and potential toxicity. However, there is little information on the occurrence and characteristics of OPEs in rural areas, especially those with cold year-round temperatures and frozen soil in winter. In this study, environmental samples were collected, in summer and winter, from villages and towns in Northeast China differing in the types and intensities of their anthropogenic activities. The samples were analyzed for 12 OPEs. The results showed the widespread presence of alkyl-OPEs, Cl-OPEs, and aryl-OPEs in the water, soil, snow, and ice of the study sites. In summer, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the primary compounds in water and soil, respectively. The ∑12OPE concentration in three villages varied from 46.26 to 257.37 ng/L in water, and from 6.62 to 19.46 ng/g in soils. The ∑12OPE concentrations in water were lower in winter than summer, but conversely, ∑12OPE concentrations in frozen soils in winter were higher than those in soils in summer. In winter, there was a shift in the predominant OPEs in water and frozen soils, with dominance of TCEP and complex compounds, respectively. Obvious seasonal characteristics of the potential sources and ecological risks of OPEs in these areas were also determined, with more complex sources of OPEs seen in summer than winter. In summer, only 2-ethylhexyl diphenyl phosphate (EHDPP) in water posed a potential risk, while in summer and, especially, in winter, EHDPP and tris(2-ethylhexyl) phosphate posed potential risks in soils. The high ∑12OPE concentration in snow (56.77 ng/L) implied that wet deposition can amplify OPEs in other environmental compartments. This is the first systematic report on OPEs in a cold rural area. Our findings highlight the need for seasonal monitoring of OPEs in similar areas.


Assuntos
Retardadores de Chama , China , Monitoramento Ambiental/métodos , Ésteres , Retardadores de Chama/análise , Organofosfatos , Fosfatos , Estações do Ano , Solo , Água
2.
Sci Total Environ ; 806(Pt 3): 151348, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728211

RESUMO

Organophosphate esters (OPEs) are widely used flame retardants that are frequently released into the environment, causing potential harm to humans and ecosystems. Tibet is located on the Tibetan Plateau, known as the "roof of the world", but the occurrence of OPEs in Tibet remains unclear. This is the first report of the occurrence, potential sources and risks of 12 OPEs in water, soil, sediment and snow from Xainza, a typical town at high-elevation in Tibet (average elevation = 4700 m). Ten OPEs were observed, with ∑OPE concentrations of 46.45-1744.73 ng/L in surface water, 29.74-73.85 ng/g in soil, and 13.30-32.23 ng/g in sediment. Moreover, the mean ∑OPE concentration in snow was 413.90 ng/L. Tris (2-chloroethyl) phosphate (TCEP) and tris (2-chloroisopropyl) phosphate (TCPP) were the main OPEs in surface water and snow, while 2-ethylhexyl diphenyl phosphate (EHDPP) was dominant in soil and sediment. Local human activities and long-distance atmospheric transport may be the main sources of OPEs in Xainza. The assessment of ecological risk indicated that EHDPP in soil poses potential risk. The occurrence of OPEs in Xainza showed that more attention should be paid to persistent organic pollutants in high-elevation regions.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , China , Ecossistema , Ésteres , Retardadores de Chama/análise , Humanos , Organofosfatos , Tibet
3.
Sci Total Environ ; 738: 139912, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531607

RESUMO

Ultraviolet (UV) irradiation is an abiotic pathway for the transformation of complex phosphorus (P) components into inorganic P in ecosystems. To explore the effect of UV irradiation on organic P (OP) bioavailability in the water level fluctuation zone (WLFZ) soil, we collected representative soil samples from WLFZ of the Pengxi River, a tributary of the TGR, China. We determined the contents of different forms of OP in the WLFZ soil through sequential extraction. The bioavailability of different forms of OP and the effect of UV light were characterised using a combination of enzymatic hydrolysis and UV irradiation. The OP contents of the different extracts (Po) were ranked as NaOH-Po > NaHCO3-Po > H2O-Po, whereas those of enzymatically hydrolysable organic P (EHP) were ranked as NaOH-EHP > NaHCO3-EHP > H2O-EHP. UV irradiation was found to improve OP bioavailability, as demonstrated by increased levels of UV-sensitive P (UV-P) and EHP in the extracts after irradiation. The total contents of bioavailable Po in extracts were 5.6-35.3% higher after UV irradiation than before irradiation. Thus, the effect of UV irradiation on the OP bioavailability and release activity cannot be neglected in TGR WLFZ soil.


Assuntos
Fósforo/análise , Solo , Disponibilidade Biológica , China , Ecossistema , Raios Ultravioleta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA