Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 97: 336-345, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693243

RESUMO

Benzyl isothiocyanate (BITC) is a cruciferous vegetable-derived compound with anticancer properties in human cancer cells. However, its anticancer potential and underlying mechanisms remain absent in human oral cancer cells. Results indicate that BITC inhibits growth, promotes G2/M phase arrest and triggers apoptosis of OC2 cells with a minimal toxicity to normal cells. BITC-induced cell death was completely prevented by pretreatment with thiol-containing redox compounds including N-acetyl-l-cysteine (NAC), glutathione (GSH), dithiothreitol, and 2-mercaptoethanol, but not free radical scavengers mito-TEMPO, catalase, apocynin, l-NAME and mannitol. BITC rapidly produced reactive oxygen species and nitric oxide, triggered oxidative DNA damage. BITC effectively decreased the intracellular GSH and GSH/GSSG ratio and redox balance recovery by thiol-containing redox compounds, but not by free radical scavengers. Accordingly, redox stresses-DNA damage response (DDR) activated ATM, Chk2, p53, and p21 and subsequently resulted in G2/M phase arrest by inhibiting Cdc2 and cyclin B1. Notably, BITC-induced apoptosis was associated with reduced Mcl-1 and Bcl-2 expression, diminished mitochondrial membrane potential (ΔΨm), and increased PARP cleavage. These BITC-induced redox stress-mediated DDR and apoptosis could be blocked by NAC and GSH. Therefore, BITC can be a rational drug candidate for oral cancer and acted via a redox-dependent pathway.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias Bucais/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença Aguda , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 36(8): 1117-22, 2016 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-27578583

RESUMO

OBJECTIVE: To understand the mechanism by which tenascin-C regulates osteoblast differentiation and the role of tenascin-C in osteoporosis. METHODS: Tenascin-C protein expression in femoral spongy bone of mice with or without osteoporosis was analyzed using Western blotting. In MC3T3-E1 osteoblasts with or without tenascin-C depletion by a specific siRNA targeting tenascin-C, alkaline phosphatase activity and Dickkopf-1 (DKK-1) expression were determined using quantitative RT-PCR and Western blotting, and the transcriptional activity of Wnt signaling pathway was analyzed using a luciferase reporter assay. The possible interaction of tenascin-C with DKK-1 predicted by STRING software was verified by immunoprecipitation. RESULTS: s Tenascin-C was markedly down-regulated in hemoral spongy bone of mice with osteoporosis as compared with the control mice. Osteoblastic differentiation was markedly suppressed in MC3T3-E1 osteoblast after tenascin-C depletion, and was significantly reversed by simultaneous ß-catenin over-expression. siRNA-mediated knockdown of tenascin-C, which bound DKK-1, up-regulated the expression of DKK-1 and consequently lowered the transcriptional activity of Wnt pathway. CONCLUSION: Tenascin-C knockdown attenuates its negative control on DKK-1 to suppress the transcriptional activity of Wnt pathway, which in turn suppresses osteoblastic differentiation and promotes osteoporosis.


Assuntos
Diferenciação Celular , Osteoblastos/citologia , Osteoporose/fisiopatologia , Tenascina/metabolismo , Via de Sinalização Wnt , Animais , Técnicas de Silenciamento de Genes , Camundongos , Osteogênese , RNA Interferente Pequeno/genética , Tenascina/genética , Regulação para Cima , beta Catenina/metabolismo
3.
Free Radic Biol Med ; 74: 1-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24952138

RESUMO

Phenethyl isothiocyanate (PEITC) is a naturally occurring cruciferous vegetable-derived compound that inhibits cell growth and induces apoptosis in oral cancer cells. However, the exact mechanism of PEITC action has not been fully elucidated. This study investigated the molecular mechanism and anticancer potential of PEITC in oral squamous cell carcinoma (OSCC) cells with various p53 statuses. PEITC inhibited the growth of OC2, SCC4, and SCC25 cells (functional p53 mutants) in a dose-dependent manner with low toxicity to normal cells. Treatment with PEITC induced reactive oxygen species production, nitric oxide generation, and GSH depletion and triggered DNA damage response as evidenced by flow cytometry, 8-OHdG formation, and comet assay. Furthermore, the subsequent activation of ATM, Chk2, and p53 as well as the increased expression of downstream proteins p21 and Bax resulted in a G2/M phase arrest by inhibiting Cdc25C, Cdc2, and cyclin B1. The PEITC-induced apoptotic cell death, following a diminished mitochondrial transmembrane potential, reduced the expression of Bcl-2 and Mcl-1, released mitochondrial cytochrome c, and activated caspase 3 and PARP cleavage. The p53 inhibitor pifithrin-α and the antioxidants N-acetylcysteine and glutathione (GSH) protected the cells from PEITC-mediated apoptosis. However, mito-TEMPO, catalase, apocynin, and L-NAME did not prevent PEITC-induced cell death, suggesting that PEITC induced G2/M phase arrest and apoptosis in oral cancer cells via a GSH redox stress and oxidative DNA damage-induced ATM-Chk2-p53-related pathway. These results provide new insights into the critical roles of both GSH redox stress and p53 in the regulation of PEITC-induced G2/M cell cycle arrest and apoptosis in OSCCs.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Isotiocianatos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Brassicaceae/química , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Inibidores do Crescimento/farmacologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Mutação/genética , Óxido Nítrico/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA