Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Front Immunol ; 15: 1475206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380997

RESUMO

Introduction: Gliomas are the most common and aggressive type of primary brain tumor, with a poor prognosis despite current treatment approaches. Understanding the molecular mechanisms underlying glioma development and progression is critical for improving therapies and patient outcomes. Methods: The current study comprehensively analyzed large-scale single-cell RNA sequencing and bulk RNA sequencing of glioma samples. By utilizing a series of advanced computational methods, this integrative approach identified the gene UPP1 (Uridine Phosphorylase 1) as a novel driver of glioma tumorigenesis and immune evasion. Results: High levels of UPP1 were linked to poor survival rates in patients. Functional experiments demonstrated that UPP1 promotes tumor cell proliferation and invasion and suppresses anti-tumor immune responses. Moreover, UPP1 was found to be an effective predictor of mutation patterns, drug response, immunotherapy effectiveness, and immune characteristics. Conclusions: These findings highlight the power of combining diverse machine learning methods to identify valuable clinical markers involved in glioma pathogenesis. Identifying UPP1 as a tumor growth and immune escape driver may be a promising therapeutic target for this devastating disease.


Assuntos
Neoplasias Encefálicas , Glioma , Aprendizado de Máquina , Evasão Tumoral , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Evasão Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Oncogenes , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/imunologia , Animais , Prognóstico , Camundongos
2.
Nat Commun ; 15(1): 7895, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266536

RESUMO

Invasive cervical cancers (ICC), caused by HPV infections, have a heterogeneous molecular landscape. We investigate the detection, timing, and HPV type specificity of somatic mutations in 3929 HPV-positive exfoliated cervical cell samples from individuals undergoing cervical screening in the U.S. using deep targeted sequencing in ICC cases, precancers, and HPV-positive controls. We discover a subset of hotspot mutations rare in controls (2.6%) but significantly more prevalent in precancers, particularly glandular precancer lesions (10.2%), and cancers (25.7%), supporting their involvement in ICC carcinogenesis. Hotspot mutations differ by HPV type, and HPV18/45-positive ICC are more likely to have multiple hotspot mutations compared to HPV16-positive ICC. The proportion of cells containing hotspot mutations is higher (i.e., higher variant allele fraction) in ICC and mutations are detectable up to 6 years prior to cancer diagnosis. Our findings demonstrate the feasibility of using exfoliated cervical cells for detection of somatic mutations as potential diagnostic biomarkers.


Assuntos
Colo do Útero , Mutação , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Colo do Útero/virologia , Colo do Útero/patologia , Adulto , Pessoa de Meia-Idade , Papillomaviridae/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Displasia do Colo do Útero/virologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/patologia
3.
BMC Bioinformatics ; 25(1): 260, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118043

RESUMO

Quantitative measurement of RNA expression levels through RNA-Seq is an ideal replacement for conventional cancer diagnosis via microscope examination. Currently, cancer-related RNA-Seq studies focus on two aspects: classifying the status and tissue of origin of a sample and discovering marker genes. Existing studies typically identify marker genes by statistically comparing healthy and cancer samples. However, this approach overlooks marker genes with low expression level differences and may be influenced by experimental results. This paper introduces "GENESO," a novel framework for pan-cancer classification and marker gene discovery using the occlusion method in conjunction with deep learning. we first trained a baseline deep LSTM neural network capable of distinguishing the origins and statuses of samples utilizing RNA-Seq data. Then, we propose a novel marker gene discovery method called "Symmetrical Occlusion (SO)". It collaborates with the baseline LSTM network, mimicking the "gain of function" and "loss of function" of genes to evaluate their importance in pan-cancer classification quantitatively. By identifying the genes of utmost importance, we then isolate them to train new neural networks, resulting in higher-performance LSTM models that utilize only a reduced set of highly relevant genes. The baseline neural network achieves an impressive validation accuracy of 96.59% in pan-cancer classification. With the help of SO, the accuracy of the second network reaches 98.30%, while using 67% fewer genes. Notably, our method excels in identifying marker genes that are not differentially expressed. Moreover, we assessed the feasibility of our method using single-cell RNA-Seq data, employing known marker genes as a validation test.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/classificação , Redes Neurais de Computação , Biomarcadores Tumorais/genética , RNA-Seq/métodos
4.
Metabolites ; 14(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39057703

RESUMO

This prospective study in Hong Kong aimed at identifying prognostic metabolomic and immunologic biomarkers for Coronavirus Disease 2019 (COVID-19). We examined 327 patients, mean age 55 (19-89) years, in whom 33.6% were infected with Omicron and 66.4% were infected with earlier variants. The effect size of disease severity on metabolome outweighed others including age, gender, peak C-reactive protein (CRP), vitamin D and peak viral levels. Sixty-five metabolites demonstrated strong associations and the majority (54, 83.1%) were downregulated in severe disease (z score: -3.30 to -8.61). Ten cytokines/chemokines demonstrated strong associations (p < 0.001), and all were upregulated in severe disease. Multiple pairs of metabolomic/immunologic biomarkers showed significant correlations. Fourteen metabolites had the area under the receiver operating characteristic curve (AUC) > 0.8, suggesting a high predictive value. Three metabolites carried high sensitivity for severe disease: triglycerides in medium high-density lipoprotein (MHDL) (sensitivity: 0.94), free cholesterol-to-total lipids ratio in very small very-low-density lipoprotein (VLDL) (0.93), cholesteryl esters-to-total lipids ratio in chylomicrons and extremely large VLDL (0.92);whereas metabolites with the highest specificity were creatinine (specificity: 0.94), phospholipids in large VLDL (0.94) and triglycerides-to-total lipids ratio in large VLDL (0.93). Five cytokines/chemokines, namely, interleukin (IL)-6, IL-18, IL-10, macrophage inflammatory protein (MIP)-1b and tumour necrosis factor (TNF)-a, had AUC > 0.8. In conclusion, we demonstrated a tight interaction and prognostic potential of metabolomic and immunologic biomarkers enabling an outcome-based patient stratification.

5.
NPJ Biofilms Microbiomes ; 10(1): 39, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589501

RESUMO

Dysbiosis of the human oral microbiota has been reported to be associated with oral cavity squamous cell carcinoma (OSCC) while the host-microbiota interactions with respect to the potential impact of pathogenic bacteria on host genomic and epigenomic abnormalities remain poorly studied. In this study, the mucosal bacterial community, host genome-wide transcriptome and DNA CpG methylation were simultaneously profiled in tumors and their adjacent normal tissues of OSCC patients. Significant enrichment in the relative abundance of seven bacteria species (Fusobacterium nucleatum, Treponema medium, Peptostreptococcus stomatis, Gemella morbillorum, Catonella morbi, Peptoanaerobacter yurli and Peptococcus simiae) were observed in OSCC tumor microenvironment. These tumor-enriched bacteria formed 254 positive correlations with 206 up-regulated host genes, mainly involving signaling pathways related to cell adhesion, migration and proliferation. Integrative analysis of bacteria-transcriptome and bacteria-methylation correlations identified at least 20 dysregulated host genes with inverted CpG methylation in their promoter regions associated with enrichment of bacterial pathogens, implying a potential of pathogenic bacteria to regulate gene expression, in part, through epigenetic alterations. An in vitro model further confirmed that Fusobacterium nucleatum might contribute to cellular invasion via crosstalk with E-cadherin/ß-catenin signaling, TNFα/NF-κB pathway and extracellular matrix remodeling by up-regulating SNAI2 gene, a key transcription factor of epithelial-mesenchymal transition (EMT). Our work using multi-omics approaches explored complex host-microbiota interactions and provided important insights into genetic and functional basis in OSCC tumorigenesis, which may serve as a precursor for hypothesis-driven study to better understand the causational relationship of pathogenic bacteria in this deadly cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Microbiota , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Epigenômica , Disbiose , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Bactérias , Fusobacterium nucleatum , Neoplasias de Cabeça e Pescoço/genética , Epigênese Genética , Microambiente Tumoral
6.
Environ Toxicol ; 39(10): 4496-4511, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38488682

RESUMO

In the realm of glioma treatment, our groundbreaking research has uncovered the pivotal role of Integrin Beta 2 (ITGB2) in non-apoptotic cell death and its profound implications for immunotherapy efficacy. Gliomas, known for their aggressive and infiltrative nature, demand innovative therapeutic strategies for improved patient outcomes. Our study bridges a critical gap by examining the interplay between non-apoptotic cell death and immunotherapy response in gliomas. Through comprehensive analysis of ten diverse glioma datasets, we developed a unique death enrichment score and identified ITGB2 as a significant risk marker. This study demonstrates that ITGB2 can predict immune activity, mutation characteristics, and drug response in glioma patients. We reveal that ITGB2 not only mediates glioma proliferation and migration but also crucially influences immunotherapy responses by modulating the interaction between gliomas and macrophages by single-cell sequencing analysis (iTalk and ICELLNET). Employing a variety of molecular and cellular methodologies, including in vitro models, our findings highlight ITGB2 as a potent marker in glioma biology, particularly impacting macrophage migration and polarization. We present compelling evidence of ITGB2's dual role in regulating tumor cell behavior and shaping the immune landscape, thereby influencing therapeutic outcomes. The study underlines the potential of ITGB2-targeted strategies in enhancing the efficacy of immunotherapy and opens new avenues for personalized treatment approaches in glioma management. In conclusion, this research marks a significant stride in understanding glioma pathology and therapy, positioning ITGB2 as a key biomarker and a promising target in the quest for effective glioma treatments.


Assuntos
Glioma , Imunoterapia , Glioma/patologia , Glioma/genética , Glioma/imunologia , Glioma/terapia , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Morte Celular , Antígenos CD18/genética , Antígenos CD18/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Macrófagos/imunologia
7.
Nat Commun ; 15(1): 2546, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514647

RESUMO

Influenza virus continuously evolves to escape human adaptive immunity and generates seasonal epidemics. Therefore, influenza vaccine strains need to be updated annually for the upcoming flu season to ensure vaccine effectiveness. We develop a computational approach, beth-1, to forecast virus evolution and select representative virus for influenza vaccine. The method involves modelling site-wise mutation fitness. Informed by virus genome and population sero-positivity, we calibrate transition time of mutations and project the fitness landscape to future time, based on which beth-1 selects the optimal vaccine strain. In season-to-season prediction in historical data for the influenza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic matching compared to existing approaches. In prospective validations, the model shows superior or non-inferior genetic matching and neutralization against circulating virus in mice immunization experiments compared to the current vaccine. The method offers a promising and ready-to-use tool to facilitate vaccine strain selection for the influenza virus through capturing heterogeneous evolutionary dynamics over genome space-time and linking molecular variants to population immune response.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Vacinas contra Influenza/genética , Vírus da Influenza A Subtipo H3N2/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Mutação , Estações do Ano
8.
Virol Sin ; 39(2): 218-227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316363

RESUMO

The SARS-CoV-2 Omicron variants are notorious for their transmissibility, but little is known about their subgenomic RNA (sgRNA) expression. This study applied RNA-seq to delineate the quantitative and qualitative profiles of canonical sgRNA of 118 respiratory samples collected from patients infected with Omicron BA.2 and compared with 338 patients infected with non-variant of concern (non-VOC)-D614G. A unique characteristic profile depicted by the relative abundance of 9 canonical sgRNAs was reproduced by both BA.2 and non-VOC-D614G regardless of host gender, age and presence of pneumonia. Remarkably, such profile was lost in samples with low viral load, suggesting a potential application of sgRNA pattern to indicate viral activity of individual patient at a specific time point. A characteristic qualitative profile of canonical sgRNAs was also reproduced by both BA.2 and non-VOC-D614G. The presence of a full set of canonical sgRNAs carried a coherent correlation with crude viral load (AUC â€‹= â€‹0.91, 95% CI 0.88-0.94), and sgRNA ORF7b was identified to be the best surrogate marker allowing feasible routine application in characterizing the infection status of individual patient. Further potentials in using sgRNA as a target for vaccine and antiviral development are worth pursuing.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Carga Viral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , COVID-19/virologia , COVID-19/diagnóstico , Genoma Viral/genética , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , RNA Subgenômico , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Idoso de 80 Anos ou mais
9.
Eur J Protistol ; 93: 126062, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368736

RESUMO

Many ciliated protists prey on other large microbial organisms, including other protists and microscopic metazoans. The ciliate class Litostomatea unites both predatory and endosymbiotic species. The evolution of predation ability in ciliates remains poorly understood, in part, due to a lack of genomic data. To fill this gap, we acquired the transcriptome profiles of six predatory litostomateans using single-cell sequencing technology and investigated their transcriptomic features. Our results show that: (1) in contrast to non-predatory ciliates, the predatory litostomateans have expanded gene families associated with transmembrane activity and reactive oxidative stress response pathways, potentially as a result of cellular behaviors such as fast contraction and extension; (2) the expansion of the calcium-activated BK potassium channel gene family, which hypothetically regulates cell contractility, is an ancient evolutionary event for the class Litostomatea, suggesting a rewired metabolism associated with the hunting behavior of predatory ciliates; and (3) three whole genome duplication (WGD) events have been detected in litostomateans, with genes associated with biosynthetic processes, transmembrane activity, and calcium-activated potassium channel activity being retained during the WGD events. In addition, we explored the evolutionary relationships among 17 ciliate species, including eight litostomateans, and provided a rich foundational dataset for future in-depth phylogenomic studies of Litostomatea. Our comprehensive analyses suggest that the rewired cellular metabolism via expanded gene families and WGD events might be the potential genetic basis for the predation ability of raptorial ciliates.


Assuntos
Cilióforos , Comportamento Predatório , Animais , Cilióforos/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Evolução Molecular , Filogenia
10.
Mol Med Rep ; 29(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186310

RESUMO

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that the PLD2 western blotting data shown in Fig. 3A and the Transwell invasion assay data shown in Fig. 6 were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Molecular Medicine Reports, or were under consideration for publication at around the same time. In view of the fact that certain of these data had already apparently been published previously, the Editor of Molecular Medicine Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 9: 503­508, 2014; 10.3892/mmr.2013.1814].

11.
Cancers (Basel) ; 16(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201653

RESUMO

The incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) is rising in the West, but little is known in Asia. This study elucidated changes in the incidence and HPV-positive portion of OPSCC in Hong Kong. Data from population-based cancer registry were used to analyze the incidence of OPSCC in association with other head and neck cancers. Archived tumor tissues were tested for HPV. From 1986 to 2020, there was a marked decrease in the incidence of nasopharyngeal and laryngeal cancers, but a persistent increase in OPSCC from 36 cases in 1986 to 116 cases in 2020. The average positive rate for high-risk HPV was 36.1% (112/310) among OPSCC diagnosed in 2010-2020. The HPV-positive rate in recent years was significantly higher than earlier cases (tonsil SCC: 64.7% (55/85) in 2016-2020 vs. 40.4% (19/47) in 2010-2015, p = 0.007). Patients with HPV-positive tonsil cancers were significantly younger than those negative (mean [SD]: 58.9 [9.9] vs. 64.3 [13.3] years, p = 0.006), but no significant difference was observed between genders. A persistent increase in the incidence of oropharyngeal cancer over the last few decades was observed in Hong Kong, which can be explained by the remarkable increase in HPV-positive tonsil cancers.

12.
Sci Total Environ ; 912: 168743, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007124

RESUMO

Though recombinant strains are increasingly recognized for their potential in heavy metal remediation, few studies have evaluated their safety. Moreover, biosafety assessments of fecal-oral pathway exposure at country as well as global level have seldom analyzed the health risks of exposure to microorganisms from a microscopic perspective. The present study aimed to predict the long-term toxic effects of recombinant strains by conducting a subacute toxicity test on the chromium-removal recombinant strain 3458 and analyzing the gut microbiome. The available disinfection methods were also evaluated. The results showed that strain 3458 induced liver damage and affected renal function and lipid metabolism at 1.0 × 1011 CFU/mL, which may be induced by its carrier strain, pET-28a. Strain 3458 poses the risk of increasing the number of pathogenic bacteria under prolonged exposure. When 500 mg L-1 chlorine-containing disinfectant or 250 mg L-1 chlorine dioxide disinfectant was added for 30 min, the sterilization rate exceeded 99.9 %. These findings suggest that existing wastewater disinfection methods can effectively sterilize strain 3458, ensuring its application value. The present study can serve a reference for the biosafety evaluation of the recombinant strain through exposure to the digestive tract and its feasibility for application in environmental pollution remediation.


Assuntos
Contenção de Riscos Biológicos , Desinfetantes , Camundongos , Animais , Biodegradação Ambiental , Cromo/análise , Desinfetantes/toxicidade , Medição de Risco
13.
J Eukaryot Microbiol ; 71(1): e13007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37886908

RESUMO

Free-living litostomatean ciliates, prominent microeukaryote predators commonly encountered in freshwater and marine habitats, play vital roles in maintaining energy flow and nutrient cycles. Nevertheless, understanding their biodiversity and phylogenetic relationships remains challenging due to insufficient morphological information and molecular data. As a new contribution to this group, three haptorian ciliates, including two new species (Actinobolina bivacuolata sp. nov. and Papillorhabdos foissneri sp. nov.) and the insufficiently described type species, Actinobolina radians, were isolated from wetlands around Lake Weishan, China and investigated by a combination of living morphology, stained preparations, and 18S rRNA gene sequence data. An illustrated key of the valid species within the two genera is provided. In addition, we reveal the phylogenetic positions of these two genera for the first time. Although they differ in all key morphologic characters such as general appearance (ellipsoidal with numerous tentacles vs. cylindrical), extrusomes (stored in tentacles vs. anchored to pellicle), circumoral kinety (present vs. absent), composition of somatic kineties (kinetosome clusters vs. monokinetids), and number of dorsal brush rows (1 vs. 4), they both cluster in a fully supported clade in the phylogenetic tree, which indicates that the biodiversity and additional molecular markers of this group need further exploration.


Assuntos
Cilióforos , Filogenia , RNA Ribossômico 18S/genética , Genes de RNAr , China , Lagos
14.
J Dent ; 141: 104801, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38097035

RESUMO

OBJECTIVES: To review the application of omics technologies in the field of cariology research and provide critical insights into the emerging opportunities and challenges. DATA & SOURCES: Publications on the application of omics technologies in cariology research up to December 2022 were sourced from online databases, including PubMed, Web of Science and Scopus. Two independent reviewers assessed the relevance of the publications to the objective of this review. STUDY SELECTION: Studies that employed omics technologies to investigate dental caries were selected from the initial pool of identified publications. A total of 922 publications with one or more omics technologies adopted were included for comprehensive bibliographic analysis. (Meta)genomics (676/922, 73 %) is the predominant omics technology applied for cariology research in the included studies. Other applied omics technologies are metabolomics (108/922, 12 %), proteomics (105/922, 11 %), and transcriptomics (76/922, 8 %). CONCLUSION: This study identified an emerging trend in the application of multiple omics technologies in cariology research. Omics technologies possess significant potential in developing strategies for the detection, staging evaluation, risk assessment, prevention, and management of dental caries. Despite the numerous challenges that lie ahead, the integration of multi-omics data obtained from individual biological samples, in conjunction with artificial intelligence technology, may offer potential avenues for further exploration in caries research. CLINICAL SIGNIFICANCE: This review presented a comprehensive overview of the application of omics technologies in cariology research and discussed the advantages and challenges of using these methods to detect, assess, predict, prevent, and treat dental caries. It contributes to steering research for improved understanding of dental caries and advancing clinical translation of cariology research outcomes.


Assuntos
Cárie Dentária , Humanos , Cárie Dentária/terapia , Inteligência Artificial , Genômica/métodos , Proteômica/métodos , Bibliometria
15.
Front Immunol ; 14: 1282734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928523

RESUMO

Introduction: Copper metabolism encompasses all cellular metabolic processes involving copper ions and plays a significant role in the pathogenesis of diseases, including cancer. Furthermore, copper is intricately involved in various processes related to nucleotide metabolism. However, a comprehensive analysis of copper metabolism in gliomas remains lacking despite its importance. Methods: To address this gap, glioma patients were stratified based on the expression levels of copper metabolism-related genes. By utilizing machine learning techniques, a novel copper metabolism-associated biomarker was developed. The potential of this biomarker in prognosis, mutation analysis, and predicting immunotherapy response efficiency in gliomas was systematically investigated. Results: Notably, IGFBP2, identified as a glioma tumor promoter, was found to promote disease progression and influence immunotherapy response. Additionally, glioma-derived IGFBP2 was observed to enhance microglial migration. High IGFBP2 expression in GBM cells facilitated macrophage interactions through the EGFR, CD63, ITGB1, and CD44 signaling pathways. Discussion: Overall, the copper metabolism-associated biomarker shows promising potential to enhance the clinical management of gliomas, offering valuable insights into disease prognosis and treatment strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Cobre , Glioma/genética , Biomarcadores , Imunoterapia
16.
Front Immunol ; 14: 1260169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795080

RESUMO

Introduction: Gliomas have emerged as the predominant brain tumor type in recent decades, yet the exploration of non-apoptotic cell death regulated by the pan-optosome complex, known as pan-apoptosis, remains largely unexplored in this context. This study aims to illuminate the molecular properties of pan-apoptosis-related genes in glioma patients, classifying them and developing a signature using machine learning techniques. Methods: The prognostic significance, mutation features, immunological characteristics, and pharmaceutical prediction performance of this signature were comprehensively investigated. Furthermore, GPX8, a gene of interest, was extensively examined for its prognostic value, immunological characteristics, medication prediction performance, and immunotherapy prediction potential. Results: Experimental techniques such as CCK-8, Transwell, and EdU investigations revealed that GPX8 acts as a tumor accelerator in gliomas. At the single-cell RNA sequencing level, GPX8 appeared to facilitate cell contact between tumor cells and macrophages, potentially enhancing microglial migration. Conclusions: The incorporation of pan-apoptosis-related features shows promising potential for clinical applications in predicting tumor progression and advancing immunotherapeutic strategies. However, further in vitro and in vivo investigations are necessary to validate the tumorigenic and immunogenic processes associated with GPX8 in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Peroxidases , Humanos , Apoptose , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/terapia , Imunoterapia , Microglia/patologia , Peroxidases/genética
17.
Nucleic Acids Res ; 51(22): 12140-12149, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37904586

RESUMO

Gut phages have an important impact on human health. Methylation plays key roles in DNA recognition, gene expression regulation and replication for phages. However, the DNA methylation landscape of gut phages is largely unknown. Here, with PacBio sequencing (2120×, 4785 Gb), we detected gut phage methylation landscape based on 22 673 gut phage genomes, and presented diverse methylation motifs and methylation differences in genomic elements. Moreover, the methylation rate of phages was associated with taxonomy and host, and N6-methyladenine methylation rate was higher in temperate phages than in virulent phages, suggesting an important role for methylation in phage-host interaction. In particular, 3543 (15.63%) phage genomes contained restriction-modification system, which could aid in evading clearance by the host. This study revealed the DNA methylation landscape of gut phage and its potential roles, which will advance the understanding of gut phage survival and human health.


Assuntos
Bacteriófagos , Metilação de DNA , Microbioma Gastrointestinal , Humanos , Bacteriófagos/fisiologia , Bactérias/virologia , Archaea/virologia , Enzimas de Restrição-Modificação do DNA
18.
Cancer Cell Int ; 23(1): 220, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770914

RESUMO

Myosin heavy chain 9 (MYH9) plays an important role in a number of diseases. Nevertheless, the function of MYH9 in glioma is unclear. The present research aimed to investigate the role of MYH9 in glioma and determine whether MYH9 is involved in the temozolomide chemoresistance of glioma cells. Our results showed that MYH9 increased the proliferation and temozolomide resistance of glioma cells. The mechanistic experiments showed that the binding of MYH9 to NAP1L1, a potential promoter of tumor proliferation, inhibited the ubiquitination and degradation of NAP1L1 by recruiting USP14. Upregulation of NAP1L1 increased its binding with c-Myc and activated c-Myc, which induced the expression of CCND1/CDK4, promoting glioma cell temozolomide resistance and proliferation. Additionally, we found that MYH9 upregulation was strongly related to patient survival and is therefore a negative factor for patients with glioma. Altogether, our results show that MYH9 plays a role in glioma progression by regulating NAP1L1 deubiquitination. Thus, targeting MYH9 is a potential therapeutic strategy for the clinical treatment of glioma in the future.

19.
mSystems ; 8(5): e0052123, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37646516

RESUMO

IMPORTANCE: Eczema is a major allergic disease in children, which is particularly prevalent in Chinese children during their first year of life. In this study, we showed that alterations in the infant gut microbiota precede the development of eczema in a prospective Chinese cohort. In particular, we discovered enrichments of the genera Clostridium sensu stricto 1 and Finegoldia in the cases at 3 and 1 month of age, respectively, which may represent potential targets for intervention to prevent eczema. Besides, we identified a depletion of Bacteroides from 1 to 6 months of age and an enrichment of Clostridium sensu stricto 1 at 3 months in the eczema cases, patterns also observed in C-section-born infants within the same time frames, providing first evidence to support a role of the gut microbiota in previously reported associations between C-section and increased risk of eczema in infancy.


Assuntos
Eczema , Microbioma Gastrointestinal , Lactente , Criança , Gravidez , Feminino , Humanos , Estudos Prospectivos , Fezes , Eczema/epidemiologia , Clostridium , China/epidemiologia
20.
Front Cell Infect Microbiol ; 13: 1205401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469595

RESUMO

Longitudinal studies on upper respiratory tract microbiome in coronavirus disease 2019 (COVID-19) without potential confounders such as antimicrobial therapy are limited. The objective of this study is to assess for longitudinal changes in the upper respiratory microbiome, its association with disease severity, and potential confounders in adult hospitalized patients with COVID-19. Serial nasopharyngeal and throat swabs (NPSTSs) were taken for 16S rRNA gene amplicon sequencing from adults hospitalized for COVID-19. Alpha and beta diversity was assessed between different groups. Principal coordinate analysis was used to assess beta diversity between groups. Linear discriminant analysis was used to identify discriminative bacterial taxa in NPSTS taken early during hospitalization on need for intensive care unit (ICU) admission. A total of 314 NPSTS samples from 197 subjects (asymptomatic = 14, mild/moderate = 106, and severe/critical = 51 patients with COVID-19; non-COVID-19 mechanically ventilated ICU patients = 11; and healthy volunteers = 15) were sequenced. Among all covariates, antibiotic treatment had the largest effect on upper airway microbiota. When samples taken after antibiotics were excluded, alpha diversity (Shannon, Simpson, richness, and evenness) was similar across severity of COVID-19, whereas beta diversity (weighted GUniFrac and Bray-Curtis distance) remained different. Thirteen bacterial genera from NPSTS taken within the first week of hospitalization were associated with a need for ICU admission (area under the receiver operating characteristic curve, 0.96; 95% CI, 0.91-0.99). Longitudinal analysis showed that the upper respiratory microbiota alpha and beta diversity was unchanged during hospitalization in the absence of antimicrobial therapy.


Assuntos
COVID-19 , Microbiota , Adulto , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Nariz , Hospitalização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA