Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Small Methods ; : e2400697, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824667

RESUMO

Small molecule-based photothermal agents (PTAs) hold promising future for photothermal therapy; however, unexpected inactivation exerts negative impacts on their application clinically. Herein, a self-regenerating PTA strategy is proposed by integrating 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) with a thermodynamic agent (TDA) 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH). Under NIR laser, the photothermal effect of ABTS•+ accelerates the production of alkyl radicals by AIPH, which activates the regeneration of ABTS•+, thus creating a continuous positive feedback loop between photothermal and thermodynamic effects. The combination of ABTS•+ regeneration and alkyl radical production leads to the tandem photothermal and thermodynamic tumor therapy. In vitro and in vivo experiments confirm that the synergistic action of thermal ablation, radical damage, and oxidative stress effectively realizes tumor suppression. This work offers a promising approach to address the unwanted inactivation of PTAs and provides valuable insights for optimizing combination therapy.

2.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786088

RESUMO

Cellular demise is a pivotal event in both developmental processes and disease states, with mitochondrial regulation playing an essential role. Traditionally, cell death was categorized into distinct types, considered to be linear and mutually exclusive pathways. However, the current understanding has evolved to recognize the complex and interconnected mechanisms of cell death, especially within apoptosis, pyroptosis, and necroptosis. Apoptosis, pyroptosis, and necroptosis are governed by intricate molecular pathways, with mitochondria acting as central decision-makers in steering cells towards either apoptosis or pyroptosis through various mediators. The choice between apoptosis and necroptosis is often determined by mitochondrial signaling and is orchestrated by specific proteins. The molecular dialogue and the regulatory influence of mitochondria within these cell death pathways are critical research areas. Comprehending the shared elements and the interplay between these death modalities is crucial for unraveling the complexities of cellular demise.


Assuntos
Morte Celular , Mitocôndrias , Transdução de Sinais , Humanos , Mitocôndrias/metabolismo , Animais , Apoptose , Piroptose , Necroptose/genética
3.
Anal Chem ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820243

RESUMO

Pathological cardiac hypertrophy is a complex process that often leads to heart failure. Label-free proteomics has emerged as an important platform to reveal protein variations and to elucidate the mechanisms of cardiac hypertrophy. Endomyocardial biopsy is a minimally invasive technique for sampling cardiac tissue, but it yields only limited amounts of an ethically permissible specimen. After regular pathological examination, the remaining trace samples pose significant challenges for effective protein extraction and mass spectrometry analysis. Herein, we developed trace cardiac tissue proteomics based on the anchor-nanoparticles (TCPA) method. We identified an average of 6666 protein groups using ∼50 µg of myocardial interventricular septum samples by TCPA. We then applied TCPA to acquire proteomics from patients' cardiac samples both diagnosed as hypertrophic hearts and myocarditis controls and identified significant alterations in pathways such as regulation of actin cytoskeleton, oxidative phosphorylation, and cGMP-PKG signaling pathway. Moreover, we found multiple lipid metabolic pathways to be dysregulated in transthyretin cardiac amyloidosis compared to other types of cardiac hypertrophy. TCPA offers a new technique for studying pathological cardiac hypertrophy and can serve as a platform toolbox for proteomic research in other cardiac diseases.

4.
ACS Nano ; 18(22): 14546-14557, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776420

RESUMO

Hydrogen production by photosynthetic hybrid systems (PBSs) offers a promising avenue for renewable energy. However, the light-harvesting efficiency of PBSs remains constrained due to unclear intracellular kinetic factors. Here, we present an operando elucidation of the sluggish light-harvesting behavior for existing PBSs and strategies to circumvent them. By quantifying the spectral shift in the structural color scattering of individual PBSs during the photosynthetic process, we observe the accumulation of product hydrogen bubbles on their outer membrane. These bubbles act as a sunshade and inhibit light absorption. This phenomenon elucidates the intrinsic constraints on the light-harvesting efficiency of PBSs. The introduction of a tension eliminator into the PBSs effectively improves the bubble sunshade effect and results in a 4.5-fold increase in the light-harvesting efficiency. This work provides valuable insights into the dynamics of transmembrane transport gas products and holds the potential to inspire innovative designs for improving the light-harvesting efficiency of PBSs.

5.
Anal Chem ; 96(22): 9218-9227, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781682

RESUMO

In situ monitoring of cell secretions and communications plays a fundamental role in screening of disease diagnostic biomarkers and drugs. Quantitative detection of cell secretions and monitoring of intercellular communication have been separately reported, which often rely on target labeling or complex pretreatment steps, inevitably causing damage to the target. Simultaneous in situ noninvasive detection of cell secretions and monitoring of intercellular communication are challenging and have never been reported. Herein, we smartly developed a portable device for in situ label-free monitoring of cell secretions and communications with fluorescence and ion-transport-based nanochannel electrochemistry. Based on the dual signal mode, a series of nonelectroactive secretions were sensitively and accurately quantified. The detection limits for VEGF, MUC1, and ATP were 3.84 pg/mL, 32.7 pg/mL, and 47.4 fM (3σ/S), which were 1/3.9, 1/1.1, and 1/41 of those of commercial ELISA kits, respectively. More interestingly, under the released secretions, the gradual opening of the nanochannel connected the two cells in the left and right chambers of the device; thus, the secretion mediated intercellular communication can be monitored. The proposed platform may provide a promising tool for understanding the mechanism of intercellular communication and discovering new therapeutic targets.


Assuntos
Técnicas Eletroquímicas , Humanos , Técnicas Eletroquímicas/instrumentação , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Mucina-1/análise , Mucina-1/metabolismo , Comunicação Celular , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fluorescência , Limite de Detecção
6.
Heliyon ; 10(9): e29879, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711644

RESUMO

Background: Polycystic ovary syndrome (PCOS) is main cause of anovulatory infertility in women with gestational age. There are currently four distinct phenotypes associated with individualized endocrinology and metabolism. Growth differentiation factor 9 (GDF9) is a candidate as potential biomarker for the assessment of oocyte competence. The effect on oocyte capacity has not been evaluated and analyzed in PCOS phenotypes. Objective: We aimed to screen the expression levels of GDF9 in mature follicles of women with controlled ovarian hyperstimulation (COS) with different PCOS phenotypes. To determine the correlation between the expression level of GDF9 and oocyte development ability. Methods: In Part 1, we conducted a retrospective study comparing the clinical outcomes and endocrine characteristics of patients with PCOS according to different subgroups (depending on the presence or absence of the main features of polycystic ovarian morphology (PCOM), hyperandrogenism (HA), and oligo-anovulation (OA)) and non-PCOS control group. We stratified PCOS as phenotype A (n = 29), phenotype B (n = 18) and phenotype D (n = 24). In Part 2, the expression of GDF9 in follicular fluid (FF) and cumulus cells (CCs) were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Results: In Part 1, the baseline clinical, hormonal, and ultrasonographic characteristics of the study population were matched with the presence or absence of the cardinal features of each PCOS phenotypes showed a clear difference. Phenotypes A and D had statistically significant associations with blastocyst formation and clinical pregnancy compared with phenotypes B (p < 0.001). In Part 2, the levels of GDF9 in FF and CCs for phenotype A and B were significantly were higher than those of phenotype D (P = 0.019, P = 0.0015, respectively). Multivariate logistic regression analysis showed that GDF9 was an important independent predictor of blastocyst formation (P<0.001). The blastocyst formation rate of phenotype A was higher than that of phenotype B and D (P<0.001). Combining the results of the two parts, GDF9 appears to play a powerful role in the development of embryos into blastocysts. Conclusions: GDF9 expression varies with different PCOS phenotypes. Phenotype A had higher GDF9 levels and blastocyst formation ability.

7.
Pharmaceutics ; 16(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794327

RESUMO

Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body's adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases' pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell-cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips.

8.
JACS Au ; 4(3): 1155-1165, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559721

RESUMO

Mechanical signals in animal tissues are complex and rapidly changed, and how the force transduction emerges from the single-cell adhesion bonds remains unclear. DNA-based molecular tension sensors (MTS), albeit successful in cellular force probing, were restricted by their detection range and temporal resolution. Here, we introduced a plasmonic tension nanosensor (PTNS) to make straight progress toward these shortcomings. Contrary to the fluorescence-based MTS that only has specific force response thresholds, PTNS enabled the continuous and reversible force measurement from 1.1 to 48 pN with millisecond temporal resolution. We used the PTNS to visualize the high dynamic range single-molecule force transitions at cell-matrix adhesions during adhesion formation and migration. Time-resolved force traces revealed that the lifetime and duration of stepwise force transitions of molecular clutches are strongly modulated by the traction force through filamentous actin. The force probing technique is sensitive, fast, and robust and constitutes a potential tool for single-molecule and single-cell biophysics.

9.
Circulation ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557054

RESUMO

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated (R) Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism of BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9 (Smad1/5/9), which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.

10.
DNA Cell Biol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687351

RESUMO

Major facilitator superfamily domain containing 12 (MFSD12) regulates lysosomal cysteine import and promotes the proliferation and survival of melanoma cells. However, the expression and function of MFSD12 in other cancers, particularly in lung cancer, remain unclear. The expression of MFSD12 across various types of cancers and corresponding control tissues was examined using TIMER. MFSD12 expression in lung adenocarcinoma (LUAD) and its correlation with distinct clinicopathological features of LUAD patients were analyzed with UALCAN. The correlation between MFSD12 expression and survival of LUAD patients was assessed using the R package, survival, and the relationship between MFSD12 expression and immune infiltration status in LUAD was investigated using CIBERSORT. In addition, MFSD12 expression was knocked down in PC9 LUAD cells and their proliferation, capacity for expansion, cell cycle, apoptosis, and migration/invasion were evaluated through CCK-8 assays, colony formation assays, 7-AAD staining, Annexin V/PI staining, and Transwell assays, respectively. The stemness of these PC9 cells was determined through Western blotting, flow cytometry, and tumor sphere formation assays. MFSD12 mRNA levels were significantly elevated in multiple types of cancers, including LUAD. MFSD12 expression was also positively correlated with cancer stage, nodal metastasis, and infiltration of various immune cells in LUAD, and high MFSD12 levels predicted poor survival among LUAD patients. Knockdown of MFSD12 in PC9 cells resulted in decreased proliferation, attenuated colony formation capacity, cell cycle arrest, elevated apoptosis, impaired migration/invasion, and reduced stemness in PC9 cells. MFSD12 is an oncogene in LUAD.

11.
Angew Chem Int Ed Engl ; 63(19): e202401253, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38491764

RESUMO

Cyano-containing electrodes usually promise high theoretical potentials while suffering from uncontrollable self-dissolution and sluggish reaction kinetics. Herein, to remedy their limitations, an unprecedented core-shell heterostructured electrode of carbon nanotubes encapsulated in poly(1,4-dicyanoperfluorobenzene sulfide) (CNT@PFDCB) is rationally crafted via molecule and microstructure modulations. Specifically, the linkage of sulfide bridges of PFDCB prevents the active cyano groups from dissolving, resulting in a robust structure. The fluorinations modulate the electronic configurations in frontier orbitals, allowing higher electrical conductivity and elevated output voltage. Combined with the core-shell architecture to unlock the sluggish diffusion kinetics for both electrons and guest ions, the CNT@PFDCB exhibits an impressive capacity (203.5 mAh g-1), remarkable rate ability (127.6 mAh g-1 at 3.0 A g-1), and exceptional cycling stability (retaining 81.1 % capacity after 3000 cycles at 1.0 A g-1). Additionally, the Li-storage mechanisms regarding PFDCB are thoroughly revealed by in situ attenuated total reflection infrared spectroscopy, in situ Raman spectroscopy, and theoretical simulations, which involve the coordination interaction between Li ions and cyano groups and the electron delocalization along the conjugated skeleton. More importantly, a practical fully organic cell based on the CNT@PFDCB is well-validated that demonstrates a tremendous potential of cyanopolymer as the cathode to replace its inorganic counterparts.

13.
Funct Integr Genomics ; 24(2): 38, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376551

RESUMO

Gastric cancer (GC) is one hackneyed malignancy tumor accompanied by high death rate. DKC1 has been discovered to serve as a facilitator in several cancers. Additionally, it was discovered from one study that DKC1 displayed higher expression in GC tissues than in the normal tissues. Nevertheless, its role and regulatory mechanism in GC is yet to be illustrated. In this study, it was proved that DKC1 expression was upregulated in GC tissues through GEPIA and UALCAN databases. Moreover, we discovered that DKC1 exhibited higher expression in GC cells. Functional experiments testified that DKC1 accelerated cell proliferation, migration, and invasion in GC. Further investigation disclosed that the weakened cell proliferation, migration, and invasion stimulated by DKC1 knockdown can be reversed after TNFAIP6 overexpression. Lastly, through in vivo experiments, it was demonstrated that DKC1 strengthened tumor growth. In conclusion, our work uncovered that DKC1 aggravated GC cell migration and invasion through upregulating the expression of TNFAIP6. This discovery might highlight the function of DKC1 in GC treatment.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , Neoplasias Gástricas , Humanos , Moléculas de Adesão Celular , Proteínas de Ciclo Celular/genética , Movimento Celular , Proliferação de Células , Proteínas Nucleares/genética , Neoplasias Gástricas/genética
14.
ACS Catal ; 14(3): 1834-1845, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38327645

RESUMO

Transformations of oxygenates (CO2, CO, H2O, etc.) via Mo2C-based catalysts are facilitated by the high oxophilicity of the material; however, this can lead to the formation of oxycarbides and complicate the identification of the (most) active catalyst state and active sites. In this context, the two-dimensional (2D) MXene molybdenum carbide Mo2CTx (Tx are passivating surface groups) contains only surface Mo sites and is therefore a highly suitable model catalyst for structure-activity studies. Here, we report that the catalytic activity of Mo2CTx in Fischer-Tropsch (FT) synthesis increases with a decreasing coverage of surface passivating groups (mostly O*). The in situ removal of Tx species and its consequence on CO conversion is highlighted by the observation of a very pronounced activation of Mo2CTx (pretreated in H2 at 400 °C) under FT conditions. This activation process is ascribed to the in situ reductive defunctionalization of Tx groups reaching a catalyst state that is close to 2D-Mo2C (i.e., a material containing no passivating surface groups). Under steady-state FT conditions, 2D-Mo2C yields higher hydrocarbons (C5+ alkanes) with 55% selectivity. Alkanes up to the kerosine range form, with value of α = 0.87, which is ca. twice higher than the α value reported for 3D-Mo2C catalysts. The steady-state productivity of 2D-Mo2C to C5+ hydrocarbons is ca. 2 orders of magnitude higher relative to a reference ß-Μo2C catalyst that shows no in situ activation under identical FT conditions. The passivating Tx groups of Mo2CTx can be reductively defunctionalized also by using a higher H2 pretreatment temperature of 500 °C. Yet, this approach leads to a removal of carbidic carbon (as methane), resulting in a 2D-Mo2C1-x catalyst that converts CO to CH4 with 61% selectivity in preference to C5+ hydrocarbons that are formed with only 2% selectivity. Density functional theory (DFT) results attribute the observed selectivity of 2D-Mo2C to C5+ alkanes to a higher energy barrier for the hydrogenation of surface alkyl species relative to the energy barriers for C-C coupling. The removal of O* is the rate-determining step in the FT reaction over 2D-Mo2C, and O* is favorably removed in the form of CO2 relative to H2O, consistent with the observation of a high CO2 selectivity (ca. 50%). The absence of other carbon oxygenates is explained by the energetic favoring of the direct over the hydrogen-assisted dissociative adsorption of CO.

15.
Chemosphere ; 350: 141067, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163463

RESUMO

Aged microplastics are ubiquitous in the aquatic environment, which inevitably accumulate metals, and then alter their migration. Whereas, the synergistic behavior and effect of microplastics and Hg(II) were rarely reported. In this context, the adsorptive behavior of Hg(II) by pristine/aged microplastics involving polystyrene, polyethylene, polylactic acid, and tire microplastics were investigated via kinetic (pseudo-first and second-order dynamics, the internal diffusion model), Langmuir, and Freundlich isothermal models; the adsorption and desorption behavior was also explored under different conditions. Microplastics aged by ozone exhibited a rougher surface attached with abundant oxygen-containing groups to enhance hydrophilicity and negative surface charge, those promoted adsorption capacity of 4-20 times increment compared with the pristine microplastics. The process (except for aged tire microplastics) was dominated by a monolayer chemical reaction, which was significantly impacted by pH, salinity, fulvic acid, and co-existing ions. Furthermore, the adsorbed Hg(II) could be effectively eluted in 0.04% HCl, simulated gastric liquids, and seawater with a maximum desorption amount of 23.26 mg/g. An artificial neural network model was used to predict the performance of microplastics in complex media and accurately capture the main influencing factors and their contributions. This finding revealed that aged microplastics had the affinity to trap Hg(II) from freshwater, whereafter it released the Hg(II) once transported into the acidic medium, the organism's gastrointestinal system, or the estuary area. These indicated that aged microplastics could be the sink or the source of Hg(II) depending on the surrounding environment, meaning that aged microplastics could be the vital carrier to Hg(II).


Assuntos
Aprendizado Profundo , Mercúrio , Poluentes Químicos da Água , Microplásticos , Plásticos , Adsorção , Poluentes Químicos da Água/análise
16.
IEEE Trans Image Process ; 33: 1002-1015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252568

RESUMO

Single image dehazing is a challenging ill-posed problem which estimates latent haze-free images from observed hazy images. Some existing deep learning based methods are devoted to improving the model performance via increasing the depth or width of convolution. The learning ability of Convolutional Neural Network (CNN) structure is still under-explored. In this paper, a Detail-Enhanced Attention Block (DEAB) consisting of Detail-Enhanced Convolution (DEConv) and Content-Guided Attention (CGA) is proposed to boost the feature learning for improving the dehazing performance. Specifically, the DEConv contains difference convolutions which can integrate prior information to complement the vanilla one and enhance the representation capacity. Then by using the re-parameterization technique, DEConv is equivalently converted into a vanilla convolution to reduce parameters and computational cost. By assigning the unique Spatial Importance Map (SIM) to every channel, CGA can attend more useful information encoded in features. In addition, a CGA-based mixup fusion scheme is presented to effectively fuse the features and aid the gradient flow. By combining above mentioned components, we propose our Detail-Enhanced Attention Network (DEA-Net) for recovering high-quality haze-free images. Extensive experimental results demonstrate the effectiveness of our DEA-Net, outperforming the state-of-the-art (SOTA) methods by boosting the PSNR index over 41 dB with only 3.653 M parameters. (The source code of our DEA-Net is available at https://github.com/cecret3350/DEA-Net.).

17.
Cell Mol Biol Lett ; 29(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172670

RESUMO

BACKGROUND: Parkinson's disease (PD) affects 1% of people over 60, and long-term levodopa treatment can cause side effects. Early diagnosis is of great significance in slowing down the pathological process of PD. Multiple pieces of evidence showed that non-coding RNAs (ncRNAs) could participate in the progression of PD pathology. Pyroptosis is known to be regulated by ncRNAs as a key pathological feature of PD. Therefore, evaluating ncRNAs and pyroptosis-related proteins in serum could be worthy biomarkers for early diagnosis of PD. METHODS: NcRNAs and pyroptosis/inflammation mRNA levels were measured with reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Luciferase assays were performed to confirm GSDME as a target of miR-675-5p and HMGB1 as a target of miR-1247-5p. In the serum of healthy controls (n = 106) and PD patients (n = 104), RT-qPCR was utilized to assess miR-675-5p, miR-1247-5p, and two related ncRNAs (circSLC8A1and lncH19) levels. The enzyme-linked immunosorbent assay measured serum levels of pyroptosis-related proteins in controls (n = 54) and PD patients (n = 70). RESULTS: Our data demonstrated that miR-675-5p and miR-1247-5p significantly changed in PD neuron and animal models. Overexpressed miR-675-5p or downregulated miR-1247-5p could regulate pyroptosis and inflammation in PD neuron models. Using the random forest algorithm, we constructed a classifier based on PD neuron-pyroptosis pathology (four ncRNAs and six proteins) having better predictive power than single biomarkers (AUC = 92%). Additionally, we verified the performance of the classifier in early-stage PD patients (AUC ≥ 88%). CONCLUSION: Serum pyroptosis-related ncRNAs and proteins could serve as reliable, inexpensive, and non-invasive diagnostic biomarkers for PD. LIMITATIONS: All participants were from the same region. Additionally, longitudinal studies in the aged population are required to explore the practical application value of the classifier.


Assuntos
MicroRNAs , Doença de Parkinson , Animais , Humanos , Idoso , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , MicroRNAs/metabolismo , Piroptose , Biomarcadores , Inflamação
18.
Behav Brain Res ; 461: 114783, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38029845

RESUMO

In recent years, central precocious puberty (CPP) in children is becoming more common, which seriously affects their physical and psychological health and requires finding a safe and effective treatment method. The aim of this study was to investigate the therapeutic effect of melatonin on CPP. A CPP model was established by subcutaneous injection of 300 micrograms of danazol into 5-day-old female mice, followed by treatment with melatonin and leuprolide. The vaginal opening was checked daily. Mice were weighed, gonads were weighed, gonadal index was calculated, and gonadal development was observed by hematoxylin and eosin (HE) staining. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were measured by ELISA. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus Kiss-1, Kiss-1 receptor (Kiss1R), gonadotropin-releasing hormone (GnRH), and pituitary GnRH receptor (GnRHR) were identified. The results showed that melatonin delayed vaginal opening time and reduced body weight, gonadal weight and indices in female CPP mice. Melatonin treatment prevents uterine wall thickening and ovarian luteinization in female CPP mice. Melatonin treatment reduces serum concentrations of FSH, LH, and E2 in female CPP mice. Melatonin suppressed the expressions of Kiss-1, Kiss1R and GnRH in the hypothalamus, and the expression of GnRHR in the pituitary of the female CPP mice. Our results suggest that melatonin can inhibit the hypothalamic-pituitary-gonadal (HPG) axis by down-regulating the Kiss-1/Kiss1R system, thereby treating CPP in female mice.


Assuntos
Melatonina , Puberdade Precoce , Humanos , Criança , Feminino , Camundongos , Animais , Puberdade Precoce/tratamento farmacológico , Puberdade Precoce/metabolismo , Melatonina/farmacologia , Kisspeptinas/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/uso terapêutico , Hormônio Foliculoestimulante/uso terapêutico , Hipotálamo/metabolismo
19.
Sci Rep ; 13(1): 21357, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049463

RESUMO

Although the role of T cells in tumor immunity and modulation of the tumor microenvironment (TME) has been extensively studied, their precise involvement in gastric adenocarcinoma remains inadequately explored. In this work, we analyzed the single-cell RNA sequencing data set in GSE183904 and identified 322 T cell marker genes using the "FindAllMarkers" method of the R package "Seurat". STAD patients in the TCGA database were divided into high-risk and low-risk categories based on risk scores. The five-gene prediction signature based on T cell marker genes can predict the prognosis of gastric cancer patients with high accuracy. In the training cohort, the areas under the receiver operating characteristic (ROC) curve were 0.667, 0.73, and 0.818 at 1, 3, and 5 years. External validation of the predictive signature was also performed using multiple clinical subgroups and GEO cohorts. To help with practical application, a diagnostic model was created that shows values of 0.732, 0.752, and 0.816 for the relevant areas under the ROC curve at 1, 3, and 5 years. The T cell marker genes identified in this study may serve as potential therapeutic targets, and the developed predictive signatures and nomograms may aid in the clinical management of gastric cancer.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Prognóstico , Imunoterapia , Nomogramas , Complexo CD3 , Microambiente Tumoral/genética
20.
Front Public Health ; 11: 1241029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152666

RESUMO

The outbreak of novel coronavirus pneumonia (COVID-19) is closely related to the intra-urban environment. It is important to understand the influence mechanism and risk characteristics of urban environment on infectious diseases from the perspective of urban environment composition. In this study, we used python to collect Sina Weibo help data as well as urban multivariate big data, and The random forest model was used to measure the contribution of each influential factor within to the COVID-19 outbreak. A comprehensive risk evaluation system from the perspective of urban environment was constructed, and the entropy weighting method was used to produce the weights of various types of risks, generate the specific values of the four types of risks, and obtain the four levels of comprehensive risk zones through the K-MEANS clustering of Wuhan's central urban area for zoning planning. Based on the results, we found: ①the five most significant indicators contributing to the risk of the Wuhan COVID-19 outbreak were Road Network Density, Shopping Mall Density, Public Transport Density, Educational Facility Density, Bank Density. Floor Area Ration, Poi Functional Mix ②After streamlining five indicators such as Proportion of Aged Population, Tertiary Hospital Density, Open Space Density, Night-time Light Intensity, Number of Beds Available in Designated Hospitals, the prediction accuracy of the random forest model was the highest. ③The spatial characteristics of the four categories of new crown epidemic risk, namely transmission risk, exposure risk, susceptibility risk and Risk of Scarcity of Medical Resources, were highly differentiated, and a four-level integrated risk zone was obtained by K-MEANS clustering. Its distribution pattern was in the form of "multicenter-periphery" gradient diffusion. For the risk composition of the four-level comprehensive zones combined with the internal characteristics of the urban environment in specific zones to develop differentiated control strategies. Targeted policies were then devised for each partition, offering a practical advantage over singular COVID-19 impact factor analyses. This methodology, beneficial for future public health crises, enables the swift identification of unique risk profiles in different partitions, streamlining the formulation of precise policies. The overarching goal is to maintain regular social development, harmonizing preventive measures and economic efforts.


Assuntos
COVID-19 , Epidemias , Humanos , Idoso , COVID-19/epidemiologia , Cidades , SARS-CoV-2 , Surtos de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA