Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Transl Radiat Oncol ; 45: 100743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362466

RESUMO

Background: Cutaneous basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most prevalent skin cancers in western countries. Surgery is the standard of care for these cancers and conventional external radiotherapy (CONV-RT) with conventional dose rate (0.03-0.06 Gy/sec) represents a good alternative when the patients or tumors are not amenable to surgery but routinely generates skin side effects. Low energy electron FLASH radiotherapy (FLASH-RT) is a new form of radiotherapy exploiting the biological advantage of the FLASH effect, which consists in delivering radiation dose in milliseconds instead of minutes in CONV-RT. In pre-clinical studies, when compared to CONV-RT, FLASH-RT induced a robust, reproducible and remarkable sparing of the normal healthy tissues, while the efficacy on tumors was preserved. In this context, we aim to prospectively evaluate FLASH-RT versus CONV-RT with regards to toxicity and oncological outcome in localized cutaneous BCC and SCC. Methods: This is a randomized selection, non-comparative, phase II study of curative FLASH-RT versus CONV-RT in patients with T1-T2 N0 M0 cutaneous BCC and SCC. Patients will be randomly allocated to low energy electron FLASH-RT (dose rate: 220-270 Gy/s) or to CONV-RT arm. Small lesions (T1) will receive a single dose of 22 Gy and large lesions (T2) will receive 30 Gy in 5 fractions of 6 Gy over two weeks.The primary endpoint evaluates safety at 6 weeks after RT through grade ≥ 3 toxicity and efficacy through local control rate at 12 months. Approximately 60 patients in total will be randomized, considering on average 1-2 lesions and a maximum of 3 lesions per patients corresponding to the total of 96 lesions required. FLASH-RT will be performed using the Mobetron® (IntraOp, USA) with high dose rate functionality.LANCE (NCT05724875) is the first randomized trial evaluating FLASH-RT and CONV-RT in a curative setting.

2.
Eur J Neurosci ; 27(1): 53-65, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18093179

RESUMO

MCT2 is the main neuronal monocarboxylate transporter essential for facilitating lactate and ketone body utilization as energy substrates. Our study reveals that treatment of cultured cortical neurons with insulin and IGF-1 led to a striking enhancement of MCT2 immunoreactivity in a time- and concentration-dependent manner. Surprisingly, neither insulin nor IGF-1 affected MCT2 mRNA expression, suggesting that regulation of MCT2 protein expression occurs at the translational rather than the transcriptional level. Investigation of the putative signalling pathways leading to translation activation revealed that insulin and IGF-1 induced p44- and p42 MAPK, Akt and mTOR phosphorylation. S6 ribosomal protein, a component of the translational machinery, was also strongly activated by insulin and IGF-1. Phosphorylation of p44- and p42 MAPK was blocked by the MEK inhibitor PD98058, while Akt phosphorylation was abolished by the PI3K inhibitor LY294002. Phosphorylation of mTOR and S6 was blocked by the mTOR inhibitor rapamycin. In parallel, it was observed that LY294002 and rapamycin almost completely blocked the effects of insulin and IGF-1 on MCT2 protein expression, whereas PD98059 and SB202190 (a p38K inhibitor) had no effect on insulin-induced MCT2 expression and only a slight effect on IGF-1-induced MCT2 expression. At the subcellular level, a significant increase in MCT2 protein expression within an intracellular pool was observed while no change at the cell surface was apparent. As insulin and IGF-1 are involved in synaptic plasticity, their effect on MCT2 protein expression via an activation of the PI3K-Akt-mTOR-S6K pathway might contribute to the preparation of neurons for enhanced use of nonglucose energy substrates following altered synaptic efficacy.


Assuntos
Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/farmacologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Ativação Enzimática/efeitos dos fármacos , Camundongos , Modelos Biológicos , Transdução de Sinais/fisiologia , Transfecção/métodos
3.
J Neurochem ; 102(2): 389-97, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17394554

RESUMO

Monocarboxylate transporter 2 (MCT2) expression is up-regulated by noradrenaline (NA) in cultured cortical neurons via a putative but undetermined translational mechanism. Western blot analysis showed that p44/p42 mitogen-activated protein kinase (MAPK) was rapidly and strongly phosphorylated by NA treatment. NA also rapidly induced serine/threonine protein kinase from AKT virus (Akt) phosphorylation but to a lesser extent than p44/p42 MAPK. However, Akt activation persisted over a longer period. Similarly, NA induced a rapid and persistent phosphorylation of mammalian target of rapamycin (mTOR), a kinase implicated in the regulation of translation in the central nervous system. Consistent with activation of the mTOR/S6 kinase pathway, phosphorylation of the ribosomal S6 protein, a component of the translation machinery, could be observed upon treatment with NA. In parallel, it was found that the NA-induced increase in MCT2 protein was almost completely blocked by LY294002 (phosphoinositide 3-kinase inhibitor) as well as by rapamycin (mTOR inhibitor), while mitogen-activated protein kinase kinase and p38 MAPK inhibitors had much smaller effects. Taken together, these data reveal that NA induces an increase in neuronal MCT2 protein expression by a mechanism involving stimulation of phosphoinositide 3-kinase/Akt and translational activation via the mTOR/S6 kinase pathway. Moreover, considering the role of NA in synaptic plasticity, alterations in MCT2 expression as described in this study might represent an adaptation to face energy demands associated with enhanced synaptic transmission.


Assuntos
Encéfalo/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/metabolismo , Norepinefrina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Transportadores de Ácidos Monocarboxílicos/agonistas , Transportadores de Ácidos Monocarboxílicos/genética , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Norepinefrina/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Proteínas Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Serina-Treonina Quinases TOR , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA