Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(34): e2312174, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38586919

RESUMO

The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges. In this study, a novel approach is presented to facilitate chirality modulation through chiral crystallization using a helical optical force field originating from localized nanogap surface plasmon resonance. The force field emerges near a gold trimer nanogap and is propelled by linear and angular momentum transfer from the incident light to the resonant nanogap plasmon. By employing Gaussian and Laguerre-Gaussian incident laser beams, notable enantioselectivity is achieved through low-power plasmon-induced chiral crystallization of an organic compound-ethylenediamine sulfate. The findings provide new insights into chirality transmission orchestrated by the exchange of linear and angular momentum between light and nanomaterials.

2.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38345115

RESUMO

In this study, we conducted successful experiments on ethylenediamine sulfate (EDS), an organic compound, to investigate its enantioselectivity in chiral crystallization. We employed optical trapping with circularly polarized laser beams, using a continuous wave laser at 1064 nm. By focusing the laser at the air-solution interface of a heavy water-saturated EDS solution, the formation of sub-micrometer-sized chiral EDS crystals was verified. Two generated enantiomorphs (d-crystal and l-crystal) were identified by the rotating analyzer method. The enantioselectivity in the chiral crystallization of EDS was assessed through 30 to 60 times experiments conducted under various conditions of laser powers and polarization modes, utilizing the count of generated crystals for each enantiomorph in the evaluation. Circularly polarized lasers at a specific power created an imbalance in the generation probability of the enantiomorphs, resulting in crystal enantiomeric excess values of 23% and -30%. The enantioselectivity mechanism was explored from two perspectives: refractive index differences of two enantiomorphs and 3D helical optical forces. Study of the thermodynamic mechanism was insufficient to explain the outcomes. Conversely, the 3D helical optical force mechanism revealed that the forces acting on EDS clusters in solution induced helical fluid motion, driving EDS nucleation, with the helicity of fluid motion determining the crystal's chirality. This approach will present new insights into chirality in industrial and research fields, with potential applications in regard to improving optical resolution and addressing the origin of homochirality.

3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955552

RESUMO

Chronic inflammation caused by liver damage or infection plays an important role in the development and progression of hepatocellular carcinoma (HCC). The activation of Toll-like receptors 4 (TLR4) is involved in HCC tumorigenesis. Moreover, high TLR4 expression in HCC has been linked to poor prognosis. Although the expression of TLR4 in HCC is relatively low compared to hematopoietic cells, it is important to explore the molecular mechanism leading to the elevation of TLR4 in HCC. In this study, we aimed to investigate the positive regulating loop for TLR4 expression in HCC in response to chronic inflammation. Our results confirm that the mRNA expression of TLR4 and proinflammatory cytokines, including interleukin 6 (IL6) and C-C motif chemokine ligand 2 (CCL2), positively correlate in human HCC samples. High TLR4 expression in HCC is more susceptible to lipopolysaccharide (LPS); TLR4 activation in HCC provides growth and survival advantages and thus promotes tumorigenesis. It has been shown that the LIN28/let-7 microRNA (miRNA) axis is a downstream effector of the TLR4 signal pathway, and let-7 miRNA is a potential post-transcriptional regulator for TLR4. Thus, we investigated the correlation between TLR4 and LIN28A mRNA and let-7g miRNA in HCC clinical samples and found that the expression of TLR4 was positively correlated with LIN28A and negatively correlated with let-7g miRNA. Moreover, by culturing PLC/PRF5 (PLC5) HCC cells in low-dose LPS-containing medium to mimic chronic inflammation for persistent TLR4 activation, the mRNA and protein levels of TLR4 and LIN28A were elevated, and let-7g miRNA was decreased. Furthermore, the 3' untranslated region (3'UTR) of TLR4 mRNA was shown to be the target of let-7g miRNA, suggesting that inhibition of let-7g miRNA is able to increase TLR4 mRNA. While parental PLC5 cells have a low susceptibility to LPS-induced cell growth, long-term LPS exposure for PLC5 cells leads to increased proliferation, cytokine expression and stemness properties. In conclusion, our studies demonstrate positive feedback regulation for chronic TLR4 activation in the modulation of TLR4 expression level through the LIN28A/let-7g pathway in HCC and suggest a connection between chronic inflammation and TLR4 expression level in HCC for promoting tumorigenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Retroalimentação , Humanos , Inflamação , Lipopolissacarídeos/farmacologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
Cell Death Dis ; 12(10): 880, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580281

RESUMO

USP7, one of the most abundant ubiquitin-specific proteases (USP), plays multifaceted roles in many cellular events, including oncogenic pathways. Accumulated studies have suggested that USP7, through modulating the MDM2/MDMX-p53 pathway, is a promising target for cancer treatment; however, little is known about the function of USP7 in p53-deficient tumors. Here we report that USP7 regulates the autoregulation of SMAD3, a key regulator of transforming growth factor ß (TGFß) signaling, that represses the cell progression of p53-deficient lung cancer. CRISPR/Cas9-mediated inactivation of USP7 in p53-deficient lung cancer H1299 line resulted in advanced cell proliferation in vitro and in xenograft tumor in vivo. Genome-wide analyses (ChIP-seq and RNA-seq) of USP7 KO H1299 cells reveal a dramatic reduction of SMAD3 autoregulation, including decreased gene expression and blunted function of associated super-enhancer (SE). Furthermore, biochemical assays show that SMAD3 is conjugated by mono-ubiquitin, which negatively regulates the DNA-binding function of SMAD3, in USP7 KO cells. In addition, cell-free and cell-based analyses further demonstrate that the deubiquitinase activity of USP7 mediates the removal of mono-ubiquitin from SMAD3 and facilitates the DNA-binding of SMAD3-SMAD4 dimer at SMAD3 locus, and thus enhance the autoregulation of SMAD3. Collectively, our study identified a novel mechanism by which USP7, through catalyzing the SMAD3 de-monoubiquitination, facilitates the positive autoregulation of SMAD3, and represses the cancer progression of p53-deficient lung cancer.


Assuntos
Progressão da Doença , Homeostase , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteína Smad3/metabolismo , Proteína Supressora de Tumor p53/deficiência , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo , Elementos Facilitadores Genéticos/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Loci Gênicos , Células HEK293 , Humanos , Luciferases/metabolismo , Neoplasias Pulmonares/genética , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
J Phys Chem Lett ; 11(11): 4422-4426, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32401515

RESUMO

Plasmonic manipulation using well-designed triangular trimeric gold nanostructures achieves a giant (greater than 50%) crystal enantiomeric excess (CEE) of sodium chlorate (NaClO3). Stronger asymmetric interactions between molecule and light are pursued to reach high enantiomeric excess. The well-designed gold nanostructures immersed in a saturated NaClO3 D2O solution were irradiated with linear, left-hand, and right-hand circular polarizations of a 1064 nm continuous-wave laser. Within seconds of the start of the irradiation, an achiral metastable crystal was formed at the laser focus, and further irradiation induced a subsequent polymorphic transition to the chiral crystal. The crystal chirality is sensitive to the handedness of circular polarization, allowing for efficient enantioselectivity. The mechanisms to achieve this giant CEE are proposed based on the results of electromagnetic field analysis generated near the nanostructure by the finite element method.

7.
PLoS One ; 12(10): e0186780, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29065139

RESUMO

Tuberculosis is a fatal human infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis) that is prevalent worldwide. Mycobacteria differ from other bacteria in that they have a cell wall composed of specific surface glycans that are the major determinant of these organisms' pathogenicity. The interaction of M. tuberculosis with pattern recognition receptors (PRRs), in particular C-type lectin receptors (CLRs), on the surface of macrophages plays a central role in initiating innate and adaptive immunity, but the picture as a whole remains a puzzle. Defining novel mechanisms by which host receptors interact with pathogens in order to modulate a specific immune response is an area of intense research. In this study, based on an in vitro lectin binding assay, CLEC9A (DNGR-1) is identified as a novel CLR that binds with mycobacteria. Our results with CLEC9A-knocked down cells and a CLEC9A-Fc fusion protein as blocking agents show that CLEC9A is involved in the activation of SYK and MAPK signaling in response to heat-killed M. tuberculosis H37Ra treatment, and it then promotes the production of CXCL8 and IL-1ß in macrophages. The CXCL8 and IL-1ß secreted by the activated macrophages are critical to neutrophil recruitment and activation. In a in vivo mouse model, when the interaction between CLEC9A and H37Ra is interfered with by treatment with CLEC9A-Fc fusion protein, this reduces lung inflammation and cell infiltration. These findings demonstrate that CLEC9A is a specialized receptor that modulates the innate immune response when there is a mycobacterial infection.


Assuntos
Temperatura Alta , Lectinas Tipo C/fisiologia , Macrófagos/fisiologia , Mycobacterium tuberculosis/fisiologia , Neutrófilos/citologia , Receptores Mitogênicos/fisiologia , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Lectinas Tipo C/genética , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Receptores Mitogênicos/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA