Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966797

RESUMO

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

2.
J Food Sci Technol ; 61(8): 1481-1491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966793

RESUMO

Bioactive polysaccharides and oligosaccharides were successfully extracted from three distinct seaweeds: Sargassum sp., Graciallaria sp., and Ulva sp. utilizing various extraction techniques. The obtained polysaccharides and oligosaccharides were subjected to comprehensive characterization, and their potential antioxidant properties were assessed using a Hep G2 cell model. Analysis via FTIR spectroscopy unveiled the presence of sulfate groups in the polysaccharides and oligosaccharides derived from Sargassum sp. The antioxidant capabilities were assessed through various assays (DPPH, ABTS, Fe-ion chelation, and reducing power), revealing that SAR-OSC exhibited superior antioxidant activity than others. This was attributed to its higher phenolic content (24.6 µg/mg), FRAP value (36 µM Vitamin C/g of extract), and relatively low molecular weight (5.17 kDa). The study also investigated the protective effects of these polysaccharides and oligosaccharides against oxidative stress-induced damage in Hep G2 cells by measuring ROS production and intracellular antioxidant enzyme expressions (SOD, GPx, and CAT). Remarkably, SAR-OSC demonstrated the highest efficacy in protecting Hep G2 cells reducing ROS production and downregulating SOD, GPx, and CAT expressions. Current findings have confirmed that the oligosaccharides extracted by the chemical method show higher antioxidant activity, particularly SAR-OSC, and robust protective abilities in the Hep G2 cells.

3.
Mar Pollut Bull ; 205: 116683, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972218

RESUMO

This study examines the combined effects of polyethylene microplastics (PE-MP) and copper (Cu2+) on the immune and oxidative response of Litopenaeus vannamei. PE-MP adsorbed with Cu2+ at 2.3, 6.8, and 16.8 ng (g shrimp)-1) were injected into L. vannamei. Over 14 days, survival rates were monitored, and immune and oxidative stress parameters were assessed. The results showed that combined exposure to PE-MP and Cu2+ significantly reduced the survival rate and decreased total haemocyte count. Immune-related parameters (phagocytic rate, phenoloxidase and superoxide dismutase (SOD)) and antioxidant-related parameters (SOD, catalase and glutathione peroxidase mRNA and enzyme) also decreased, while respiratory burst activity significantly increased, indicating immune and antioxidant system disruption. Additionally, there was a significant increase in oxidative stress, as measured by malondialdehyde levels. Histopathological analysis revealed severe muscle, hepatopancreas, and gill damage. These results suggest that simultaneous exposure to PE-MP and Cu2+ poses greater health risks to white shrimp.

4.
Chemosphere ; 362: 142787, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972261

RESUMO

In this research, the dimensional catalysts of pure g-C3N4 photocatalysts (1D, 2D, and 3D) were investigated for the reduction of the highly toxic/carcinogenic Cr(VI) under visible light irradiation. The catalysts underwent explanation through various surface analysis techniques. According to the BET data, the specific surface area of the 3D catalyst was 1.3 and 7 times higher than those of the 2D and 1D CN catalysts, respectively. The 3D catalyst demonstrated superior performance, achieving an efficiency greater than 99% within 60 min under visible light irradiation in the presence of EDTA due to the abundance of active sites. The study also delved into the influence of factors such as the amount of EDTA-hole scavenger, pH, catalyst dosage, and temperature on the photocatalytic reduction of Cr(VI). Moreover, the 3D catalyst showed excellent reusability, maintaining an efficiency of more than 80% even after 10 cycles, and performed effectively in real water samples. The 3D CN catalyst, with its facile synthesis process, excellent visible light harvesting properties, high reduction efficiency that sustains over multiple cycles, and outstanding performance in real water samples, presents a significant advancement for practical applications in environmental remediation. This research contributes to a new understanding of developing efficient degradation methods for heavy metals in polluted water, highlighting the potential of 3D g-C3N4 catalysts in environmental cleanup efforts.

5.
Cell Death Dis ; 15(7): 494, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987564

RESUMO

Ewing's sarcoma (ES) represents a rare yet exceedingly aggressive neoplasm that poses a significant health risk to the pediatric and adolescent population. The clinical outcomes for individuals with relapsed or refractory ES are notably adverse, primarily attributed to the constrained therapeutic alternatives available. Despite significant advancements in the field, molecular pathology-driven therapeutic strategies have yet to achieve a definitive reduction in the mortality rates associated with ES. Consequently, there exists an imperative need to discover innovative therapeutic targets to effectively combat ES. To reveal the mechanism of the SETD8 (also known as lysine methyltransferase 5A) inhibitor UNC0379, cell death manners were analyzed with different inhibitors. The contributions of SETD8 to the processes of apoptosis and ferroptosis in ES cells were evaluated employing the histone methyltransferase inhibitor UNC0379 in conjunction with RNA interference techniques. The molecular regulatory mechanisms of SETD8 in ES were examined through the application of RNA sequencing (RNA-seq) and mass spectrometry-based proteomic analysis. Moreover, nude mouse xenograft models were established to explore the role of SETD8 in ES in vivo. SETD8, a sole nucleosome-specific methyltransferase that catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), was found to be upregulated in ES, and its overexpression was associated with dismal outcomes of patients. SETD8 knockdown dramatically induced the apoptosis and ferroptosis of ES cells in vitro and suppressed tumorigenesis in vivo. Mechanistic investigations revealed that SETD8 facilitated the nuclear translocation of YBX1 through post-transcriptional regulatory mechanisms, which subsequently culminated in the transcriptional upregulation of RAC3. In summary, SETD8 inhibits the apoptosis and ferroptosis of ES cells through the YBX1/RAC3 axis, which provides new insights into the mechanism of tumorigenesis of ES. SETD8 may be a potential target for clinical intervention in ES patients.


Assuntos
Apoptose , Ferroptose , Histona-Lisina N-Metiltransferase , Camundongos Nus , Sarcoma de Ewing , Humanos , Ferroptose/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Animais , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Sarcoma de Ewing/genética , Camundongos , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box
6.
J Pain Res ; 17: 2325-2339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974828

RESUMO

Background: Fu's subcutaneous needling (FSN) is a novel acupuncture technique for pain treatment. This study investigated the effects of postsurgical FSN on postoperative pain in patients receiving surgery for degenerative spinal disorders. Methods: This single-center, single-blind, randomized-controlled study involved patients undergoing surgery for degenerative spinal disorders. Participants were randomized into either an FSN group or a control group that received sham FSN. The primary outcomes were scores on the Brief Pain Inventory Taiwan version (BPI-T) and Oswestry Disability Index before and at 1, 24, and 48 hours after surgery. Secondary outcomes were muscle hardness, pethidine use, and inflammatory biomarker presence. Results: Initially, 51 patients met the inclusion criteria and were allocated (26 in the FSN group and 25 in the control group). Two patients were lost to follow-up, and finally, 49 patients (25 in the FSN group and 24 in the control group) who completed the study were analyzed. The FSN group had significantly lower pain intensity measured on the BPI-T compared with the control group at 1, 24, 48, and 72 hours after surgical treatment (all p < 0.001). Additionally, pain interference as measured on the BPI-T was lower in the FSN group than in the control group 1 hour (p = 0.001), 24 hours (p = 0.018), 48 hours (p = 0.001), and 72 hours (p = 0.017) after surgical treatment. Finally, the FSN group exhibited less muscle hardness in the latissimus dorsi and gluteus maximus 24, 48, and 72 hours (all p < 0.05) after surgery compared with the control group; patients in the FSN group also exhibited less muscle hardness in the L3 paraspinal muscle 48 hours (p = 0.001) and 72 hours (p < 0.001) after surgery compared with the control group. There were no significant differences in serum CRP, IL-1ß, IL-2, IL-6, and TNF-α levels between the FSN and control groups at 24 hours, 72 hours, and 1-month post-surgery (all p > 0.05). Conclusion: FSN treatment can reduce postoperative pain in patients receiving surgery for degenerative spinal disorders. However, larger sample sizes and multicenter clinical trials are required to verify these findings.

7.
J Food Sci Technol ; 61(7): 1283-1294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38910925

RESUMO

In the current study, ten lactic acid bacteria (LAB) isolates exhibiting anti-α-glucosidase activity were isolated from fermented food. It is directed at novel supplementary diets to prevent/improve diet-induced carbohydrate metabolism disorders and related chronic diseases. Moreover, to evaluate their safety, functionality, and probiotic potential via in vitro simulated test conditions. From 16s-rRNA sequencing, Pediococcus acidilactici (NKUST 803, 845, 858), Lactobacillus plantarum (NKUST 817, 828, 851), Levilactobacillus brevis (NKUST 816, 855) and Lactobacillus acidophilus (NKUST 803, 863) were identified. The results showed that the isolates possessed anti-pathogenic activity, auto-aggregation ability, hydrophobicity (47.44-96.4%), and gastric acid-resistant activity (79-99.1%), which proved their potential for probiotics in nutraceuticals to render hypoglycemic activity or antidiabetic effects to the host positively. Among tested isolates, L. plantarum 817 and P. acidilactici 858 exhibited maximum α-glucosidase inhibitory (AGI) activity of 35-40%. The heat map clearly showed that L. plantarum 817 exhibited the best AGI activity and probiotic potential, among others. These were studied under various simulated gut conditions and safety tests. However, all isolates possess the potential to be used as probiotics in commercial-scale health applications. Pediococcus sp. possesses notable AGI activity but relatively less colonization potential in the gut hence recommended daily intake for positive health effects.

8.
Sci Total Environ ; 946: 174253, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936713

RESUMO

The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.

9.
Sci Total Environ ; 935: 173360, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777059

RESUMO

In the evolving field of food and agriculture, pesticide utilization is inevitable for food production and poses an increasing threat to the ecosystem and human health. This review systematically investigates and provides a comprehensive overview of recent developments in smart electrochemical devices for detecting pesticides in agricultural food and runoff contaminants. The focus encompasses recent progress in lab-scale and portable electrochemical sensors, highlighting their significance in agricultural pesticide monitoring. This review compares these sensors comprehensively and provides a scientific guide for future sensor development for infield agricultural pesticide monitoring and food safety. Smart devices address challenges related to power consumption, low cost, wearability, and portability, contributing to the advancement of agricultural sustainability. By elucidating the intricate details of these smart devices, this review offers a comprehensive discussion and roadmap for future research aimed at cost-effective, flexible, and smart handy devices, including novel electrocatalysts, to foster the development of next-generation agricultural sensor technology, opportunity and future direction for food security.


Assuntos
Agricultura , Técnicas Eletroquímicas , Monitoramento Ambiental , Praguicidas , Praguicidas/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise
10.
Environ Res ; 252(Pt 4): 119143, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38751000

RESUMO

In this study, biochar derived from chestnut shells was synthesized through pyrolysis at varying temperatures from 300 °C to 900 °C. The study unveiled that the pyrolysis temperature is pivotal in defining the physical and chemical attributes of biochar, notably its adsorption capabilities and its role in activating peracetic acid (PAA) for the efficient removal of acetaminophen (APAP) from aquatic environments. Notably, the biochar processed at 900 °C, referred to as CN900, demonstrated an exceptional adsorption efficiency of 55.8 mg g-1, significantly outperforming its counterparts produced at lower temperatures (CN300, CN500, and CN700). This enhanced performance of CN900 is attributed to its increased surface area, improved micro-porosity, and a greater abundance of oxygen-containing functional groups, which are a consequence of the elevated pyrolysis temperature. These oxygen-rich functional groups, such as carbonyls, play a crucial role in facilitating the decomposition of the O-O bond in PAA, leading to the generation of reactive oxygen species (ROS) through electron transfer mechanisms. This investigation contributes to the development of sustainable and cost-effective materials for water purification, underscoring the potential of chestnut shell-derived biochar as an efficient adsorbent and catalyst for PAA activation, thereby offering a viable solution for environmental cleanup efforts.


Assuntos
Acetaminofen , Carvão Vegetal , Ácido Peracético , Pirólise , Poluentes Químicos da Água , Carvão Vegetal/química , Acetaminofen/química , Poluentes Químicos da Água/química , Ácido Peracético/química , Adsorção , Purificação da Água/métodos
11.
Neuroepidemiology ; : 1-14, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705143

RESUMO

INTRODUCTION: Preclinical evidence demonstrated the therapeutic potential of thiazolidinediones (TZDs) for the treatment of intracerebral hemorrhage (ICH). The present study conducted an investigation of cerebrovascular and cardiovascular outcomes following ICH in patients with type 2 diabetes mellitus (T2DM) treated with or without TZDs. METHODS: This retrospective nested case-control study used data from the Taiwan National Health Insurance Research Database. A total of 62,515 T2DM patients who were hospitalized with a diagnosis of ICH were enrolled, including 7,603 TZD users. Data for TZD non-users were extracted using propensity score matching. Primary outcomes included death and major adverse cardiovascular events (MACEs), which were defined as a composite of ischemic stroke, hemorrhagic stroke (HS), acute myocardial infarction, and congestive heart failure. Patients aged <20 years with a history of traumatic brain injury or any prior history of MACEs were excluded. RESULTS: TZD users had significantly lower MACE risks compared with TZD non-users following ICH (adjusted hazard ratio [aHR]: 0.90, 95% confidence interval [CI]: 0.85-0.94, p < 0.001). The most significant MACE difference reported for TZD users was HS, which possessed lower incidence than in TZD non-users, especially for the events that happened within 3 months following ICH (aHR: 0.74, 95% CI: 0.62-0.89 within 1 month, p < 0.01; aHR: 0.68, 95% CI: 0.54-0.85 between 1 and 3 month). CONCLUSION: The use of TZD in patients with T2DM was associated with a lower risk of subsequent HS and mortality following ICH.

12.
Cytopathology ; 35(4): 520-522, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708952

RESUMO

The report describes a middle-aged woman with acute cholangitis combined with acute myeloid leukaemia, and examination suggesting that she was also a patient with a rare case of total visceral inversion. The analysis of this case helps clinicians to deepen the differential diagnosis of rare diseases and improve the timeliness and accuracy of diagnosis.


Assuntos
Colangite , Leucemia Mieloide Aguda , Humanos , Colangite/patologia , Colangite/diagnóstico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/complicações , Feminino , Pessoa de Meia-Idade , Diagnóstico Diferencial , Doença Aguda
13.
Environ Pollut ; 350: 123970, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636839

RESUMO

This study presents the synthesis of a novel composite catalyst, ZIF-67, doped on sodium bicarbonate-modified biochar derived from kumquat peels (ZIF-67@KSB3), for the enhanced activation of peracetic acid (PAA) in the degradation of acetaminophen (APAP) in aqueous solutions. The composite demonstrated a high degradation efficiency, achieving 94.3% elimination of APAP at an optimal condition of 200 mg L-1 catalyst dosage and 0.4 mM PAA concentration at pH 7. The degradation mechanism was elucidated, revealing that superoxide anion (O2•-) played a dominant role, while singlet oxygen (1O2) and alkoxyl radicals (R-O•) also contributed significantly. The degradation pathways of APAP were proposed based on LC-MS analyses and molecular electrostatic potential calculations, identifying three primary routes of transformation. Stability tests confirmed that the ZIF-67@KSB3 catalyst retained an 86% efficiency in APAP removal after five successive cycles, underscoring its durability and potential for application in pharmaceutical wastewater treatment.


Assuntos
Acetaminofen , Carvão Vegetal , Ácido Peracético , Poluentes Químicos da Água , Zeolitas , Acetaminofen/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Zeolitas/química , Ácido Peracético/química , Prunus armeniaca/química , Imidazóis/química , Águas Residuárias/química , Catálise , Eliminação de Resíduos Líquidos/métodos
14.
J Diabetes ; 16(4): e13549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584275

RESUMO

AIMS: Management of blood glucose fluctuation is essential for diabetes. Exercise is a key therapeutic strategy for diabetes patients, although little is known about determinants of glycemic response to exercise training. We aimed to investigate the effect of combined aerobic and resistance exercise training on blood glucose fluctuation in type 2 diabetes patients and explore the predictors of exercise-induced glycemic response. MATERIALS AND METHODS: Fifty sedentary diabetes patients were randomly assigned to control or exercise group. Participants in the control group maintained sedentary lifestyle for 2 weeks, and those in the exercise group specifically performed combined exercise training for 1 week. All participants received dietary guidance based on a recommended diet chart. Glycemic fluctuation was measured by flash continuous glucose monitoring. Baseline fat and muscle distribution were accurately quantified through magnetic resonance imaging (MRI). RESULTS: Combined exercise training decreased SD of sensor glucose (SDSG, exercise-pre vs exercise-post, mean 1.35 vs 1.10 mmol/L, p = .006) and coefficient of variation (CV, mean 20.25 vs 17.20%, p = .027). No significant change was observed in the control group. Stepwise multiple linear regression showed that baseline MRI-quantified fat and muscle distribution, including visceral fat area (ß = -0.761, p = .001) and mid-thigh muscle area (ß = 0.450, p = .027), were significantly independent predictors of SDSG change in the exercise group, as well as CV change. CONCLUSIONS: Combined exercise training improved blood glucose fluctuation in diabetes patients. Baseline fat and muscle distribution were significant factors that influence glycemic response to exercise, providing new insights into personalized exercise intervention for diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Glicemia , Automonitorização da Glicemia , Exercício Físico/fisiologia , Músculo Esquelético
15.
Bioresour Technol ; 400: 130702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615968

RESUMO

The bioconversion of lignocellulosic biomass into novel bioproducts is crucial for sustainable biorefineries, providing an integrated solution for circular economy objectives. The current study investigated a novel microwave-assisted acidic deep eutectic solvent (DES) pretreatment of waste cocoa pod husk (CPH) biomass to extract xylooligosaccharides (XOS). The sequential DES (choline chloride/citric acid, molar ratio 1:1) and microwave (450W) pretreatment of CPH biomass was effective in 67.3% xylan removal with a 52% XOS yield from total xylan. Among different XOS of varying degrees of polymerization, a higher xylobiose content corresponding to 69.3% of the total XOS (68.22 mg/g CPH) from liquid fraction was observed. Enzymatic hydrolysis of residual xylan from pretreated CPH biomass with low commercial xylanase (10 IU/g) concentration yielded 24.2% XOS. The MW-ChCl/citric acid synergistic pretreatment approach holds great promise for developing a cost-effective and environmentally friendly method contributing to the sustainable production of XOS from agricultural waste streams.


Assuntos
Biomassa , Cacau , Solventes Eutéticos Profundos , Glucuronatos , Micro-Ondas , Oligossacarídeos , Oligossacarídeos/química , Cacau/química , Cacau/metabolismo , Hidrólise , Solventes Eutéticos Profundos/química , Xilanos , Biotecnologia/métodos , Ácidos/química , Solventes/química
16.
Bioresour Technol ; 401: 130749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679239

RESUMO

Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.


Assuntos
Microalgas , Microalgas/metabolismo , Biomassa , Biotecnologia/métodos , Nanoestruturas/química
17.
ACS Biomater Sci Eng ; 10(4): 2022-2040, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38506625

RESUMO

Chirality, one of the most fundamental properties of natural molecules, plays a significant role in biochemical reactions. Nanomaterials with chiral characteristics have superior properties, such as catalytic properties, optoelectronic properties, and photothermal properties, which have significant potential for specific applications in nanomedicine. Biomolecular modifications such as nucleic acids, peptides, proteins, and polysaccharides are sources of chirality for nanomaterials with great potential for application in addition to intrinsic chirality, artificial macromolecules, and metals. Two-dimensional (2D) nanomaterials, as opposed to other dimensions, due to proper surface area, extensive modification sites, drug loading potential, and simplicity of preparation, are prepared and utilized in diagnostic applications, drug delivery research, and tumor therapy. Current advanced studies on 2D chiral nanomaterials for biomedicine are focused on novel chiral development, structural control, and materials sustainability applications. However, despite the advances in biomedical research, chiral 2D nanomaterials still confront challenges such as the difficulty of synthesis, quality control, batch preparation, chiral stability, and chiral recognition and selectivity. This review aims to provide a comprehensive overview of the origins, synthesis, applications, and challenges of 2D chiral nanomaterials with biomolecules as cargo and chiral modifications and highlight their potential roles in biomedicine.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Nanoestruturas/química , Nanomedicina , Sistemas de Liberação de Medicamentos
18.
Environ Pollut ; 348: 123861, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537796

RESUMO

Sediments are important sinks for di-(2-ethylhexyl) phthalate (DEHP), a plasticizer, and thus, maintaining the sediment quality is essential for eliminating plasticizers in aqueous environments and recovering the sediment ecological functions. To mitigate the potential risks of endocrine-disrupting compounds, identifying an effective and eco-friendly degradation process of organic pollutants from sediments is important. However, sustainable and efficient utilization of slow pyrolysis for converting shark fishbone to generate shark fishbone biochar (SFBC) has rarely been explored. Herein, SFBC biomass was firstly produced by externally incorporating heteroatoms or iron oxide onto its surface in conjunction with peroxymonosulfate (PMS) to promote DEHP degradation and explore the associated benthic bacterial community composition from the sediment in the water column using the Fe-N-SFBC/PMS system. SFBC was pyrolyzed at 300-900 °C in aqueous sediment using a carbon-advanced oxidation process (CAOP) system based on PMS. SFBC was rationally modified via N or Fe-N doping as a radical precursor in the presence of PMS (1 × 10-5 M) for DEHP removal. The innovative SFBC/PMS, N-SFBC/PMS, and Fe-N-SFBC/PMS systems could remove 82%, 65%, and 90% of the DEHP at pH 3 in 60 min, respectively. The functionalized Fe3O4 and heteroatom (N) co-doped SFBC composite catalysts within a hydroxyapatite-based structure demonstrated the efficient action of PMS compared to pristine SFBC, which was attributed to its synergistic behavior, generating reactive radicals (SO4•-, HO•, and O2•-) and non-radicals (1O2) involved in DEHP decontamination. DEHP was significantly removed using the combined Fe-N-SFBC/PMS system, revealing that indigenous benthic microorganisms enhance their performance in DEHP-containing sediments. Further, DEHP-induced perturbation was particularly related to the Proteobacteria phylum, whereas Sulfurovum genus and Sulfurovum lithotrophicum species were observed. This study presents a sustainable method for practical, green marine sediment remediation via PMS-CAOP-induced processes using a novel Fe-N-SFBC composite material and biodegradation synergy.


Assuntos
Carvão Vegetal , Dietilexilftalato , Ácidos Ftálicos , Plastificantes , Peróxidos , Carbono , Sedimentos Geológicos
19.
Bioresour Technol ; 398: 130526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437967

RESUMO

Globally, the demands for sustainably sourced functional foods like prebiotic oligosaccharides have been constantly increasing. This study assessed the potential of pineapple leaves (PL) as lignocellulosic feedstock for sustainable production of cellulose and hemicellulose-derived oligosaccharides through its hydrothermal pretreatment (HT) followed by controlled enzymatic hydrolysis. PL was subjected to HT at 160, 175, and 190 °C for 20, 30, 60, and 90 min without any catalyst for xylooligosaccharide (XOS) production, whereas, the resulting solid content after HT was subjected to controlled enzymatic hydrolysis by commercial cellulase using conduritol B epoxide (0.5-5 mM) for glucooligosaccharides (GOS) production. HT at 160 °C for 60 min resulted in maximum yield of XOS and GOS at 23.7 and 18.3 %, respectively, in the liquid phase. Controlled enzymatic hydrolysis of HT treated (160 °C) PL solids for 20 and 30 min yielded âˆ¼ 174 mg cellobiose/g dry biomass within 24 h, indicating overall high oligosaccharide production.


Assuntos
Ananas , Celulose , Polissacarídeos , Hidrólise , Oligossacarídeos , Glucuronatos
20.
J Food Sci Technol ; 61(5): 847-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487279

RESUMO

Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA