Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 109(5): 891-900, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33866588

RESUMO

Myeloid-derived suppressor cells (MDSCs) constitute a heterogeneous population of immature myeloid cells derived from bone marrow and negatively regulate both innate and adaptive immunity in the tumor microenvironment. Previously we have demonstrated that MDSCs lacking histone deacetylase 11 (HDAC11) displayed an increased suppressive activity against CD8+ T-cells. However, the mechanisms of HDAC11 that contribute to the suppressive function of MDSCs remain unclear. Here, we show that arginase activity and NO production is significantly higher in HDAC11 knockout MDSCs when compared with wild-type (WT) controls. In the absence of HDAC11, elevated arginase level and enzymatic activity were observed preferentially in the tumor-infiltrated granulocytic MDSCs, whereas iNOS expression and NO production were increased in the tumor-infiltrated monocytic MDSCs. Of note and for the first time, we demonstrated an association between the elevated expression of immunosuppressive molecules with up-regulation of the transcription factor C/EBPß in MDSCs lacking HDAC11. Interestingly, the highest expression of C/EBPß was observed among CD11b+ Gr-1+ MDSCs isolated from tumor-bearing mice. The additional demonstration that HDAC11 is recruited to the promoter region of C/EBPß in WT MDSCs suggests a novel molecular mechanism by which HDAC11 influence the expression of immunosuppressive molecules in MDSCs through regulation of C/EBPß gene expression.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/genética , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Células Supressoras Mieloides/imunologia , Animais , Arginase/metabolismo , Células da Medula Óssea/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Regiões Promotoras Genéticas/genética , Regulação para Cima
2.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31852841

RESUMO

Clinical and preclinical studies show tissue-specific differences in tumorigenesis. Tissue specificity is controlled by differential gene expression. We prioritized genes that encode secreted proteins according to their preferential expression in normal lungs to identify candidates associated with lung cancer. Indeed, most of the lung-enriched genes identified in our analysis have known or suspected roles in lung cancer. We focused on the gene encoding neuron-derived neurotrophic factor (NDNF), which had not yet been associated with lung cancer. We determined that NDNF was preferentially expressed in the normal adult lung and that its expression was decreased in human lung adenocarcinoma and a mouse model of this cancer. Higher expression of NDNF was associated with better clinical outcome of patients with lung adenocarcinoma. Purified NDNF inhibited proliferation of lung cancer cells, whereas silencing NDNF promoted tumor cell growth in culture and in xenograft models. We determined that NDNF is downregulated through DNA hypermethylation near CpG island shores in human lung adenocarcinoma. Furthermore, the lung cancer-related DNA hypermethylation sites corresponded to the methylation sites that occurred in tissues with low NDNF expression. Thus, by analyzing the tissue-specific secretome, we identified a tumor-suppressive factor, NDNF, which is associated with patient outcomes in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/patologia , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células/genética , Ilhas de CpG , Metilação de DNA , Conjuntos de Dados como Assunto , Regulação para Baixo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Crescimento Neural/análise , Fatores de Crescimento Neural/genética , Prognóstico , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Cell ; 35(5): 752-766.e9, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085176

RESUMO

Drug-tolerant "persister" tumor cells underlie emergence of drug-resistant clones and contribute to relapse and disease progression. Here we report that resistance to the BCL-2 targeting drug ABT-199 in models of mantle cell lymphoma and double-hit lymphoma evolves from outgrowth of persister clones displaying loss of 18q21 amplicons that harbor BCL2. Further, persister status is generated via adaptive super-enhancer remodeling that reprograms transcription and offers opportunities for overcoming ABT-199 resistance. Notably, pharmacoproteomic and pharmacogenomic screens revealed that persisters are vulnerable to inhibition of the transcriptional machinery and especially to inhibition of cyclin-dependent kinase 7 (CDK7), which is essential for the transcriptional reprogramming that drives and sustains ABT-199 resistance. Thus, transcription-targeting agents offer new approaches to disable drug resistance in B-cell lymphomas.

5.
Sci Rep ; 9(1): 6136, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992475

RESUMO

Histone deacetylases (HDACs) are involved in diverse cellular regulatory mechanisms including non-canonical functions outside the chromatin environment. Several publications have demonstrated that selective HDAC inhibitors (HDACi) can influence tumor immunogenicity and the functional activity of specific immune cells. In particular, the selective inhibition of HDAC6 has been reported to decrease tumor growth in several malignancies. However, there is still no clarity about the cellular components mediating this effect. In this study, we evaluated the HDAC6i Nexturastat A as a priming agent to facilitate the transition of the tumor microenvironment from "cold" to "hot", and potentially augment immune check-point blockade therapies. This combination modality demonstrated to significantly reduce tumor growth in syngeneic melanoma tumor models. Additionally, we observed a complete neutralization of the up-regulation of PD-L1 and other immunosuppressive pathways induced by the treatment with anti-PD-1 blockade. This combination also showed profound changes in the tumor microenvironment such as enhanced infiltration of immune cells, increased central and effector T cell memory, and a significant reduction of pro-tumorigenic M2 macrophages. The evaluation of individual components of the tumor microenvironment suggested that the in vivo anti-tumor activity of HDAC6i is mediated by its effect on tumor cells and tumor-associated macrophages, and not directly over T cells. Overall, our results indicate that selective HDAC6i could be used as immunological priming agents to sensitize immunologically "cold" tumors and subsequently improve ongoing immune check-point blockade therapies.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Anti-Inflamatórios/uso terapêutico , Antígeno B7-H1/imunologia , Desacetilase 6 de Histona/imunologia , Tolerância Imunológica/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/efeitos dos fármacos
6.
Life Sci Alliance ; 1(5): e201800039, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456376

RESUMO

Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). There is no known cure for MS, and currently available drugs for managing this disease are only effective early on and have many adverse side effects. Results from recent studies suggest that histone deacetylase (HDAC) inhibitors may be useful for the treatment of autoimmune and inflammatory diseases such as MS. However, the underlying mechanisms by which HDACs influence immune-mediated diseases such as MS are unclear. More importantly, the question of which specific HDAC(s) are suitable drug targets for the potential treatment of MS remains unanswered. Here, we investigate the functional role of HDAC11 in experimental autoimmune encephalomyelitis, a mouse model for MS. Our results indicate that the loss of HDAC11 in KO mice significantly reduces clinical severity and demyelination of the spinal cord in the post-acute phase of experimental autoimmune encephalomyelitis. The absence of HDAC11 leads to reduced immune cell infiltration into the CNS and decreased monocytes and myeloid DCs in the chronic progressive phase of the disease. Mechanistically, HDAC11 controls the expression of the pro-inflammatory chemokine C-C motif ligand 2 (CCL2) gene by enabling the binding of PU.1 transcription factor to the CCL2 promoter. Our results reveal a novel pathophysiological function for HDAC11 in CNS demyelinating diseases, and warrant further investigations into the potential use of HDAC11-specific inhibitors for the treatment of chronic progressive MS.

7.
Blood ; 130(2): 146-155, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28550044

RESUMO

Histone acetylation and the families of enzymes responsible for controlling these epigenetic marks have been implicated in regulating T-cell maturation and phenotype. Here, we demonstrate a previously undefined role of histone deacetylase 11 (HDAC11) in regulating T-cell effector functions. Using EGFP-HDAC11 transgenic reporter mice, we found that HDAC11 expression was lower in effector relative to naive and central memory T-cell populations, and activation of resting T cells resulted in its decreased expression. Experiments using HDAC11 knockout (KO) mice revealed that T cells from these mice displayed enhanced proliferation, proinflammatory cytokine production, and effector molecule expression. In addition, HDAC11KO T cells had increased expression of Eomesodermin (Eomes) and TBX21 (Tbet), transcription factors previously shown to regulate inflammatory cytokine and effector molecule production. Conversely, overexpression of HDAC11 resulted in decreased expression of these genes. Chromatin immunoprecipitation showed the presence of HDAC11 at the Eomes and Tbet gene promoters in resting T cells, where it rapidly disassociated following T-cell activation. In vivo, HDAC11KO T cells were refractory to tolerance induction. HDAC11KO T cells also mediated accelerated onset of acute graft-versus-host disease (GVHD) in a murine model, characterized by increased proliferation of T cells and expression of interferon-γ, tumor necrosis factor, and EOMES. In addition, adoptive transfer of HDAC11KO T cells resulted in significantly reduced tumor burden in a murine B-cell lymphoma model. Taken together, these data demonstrate a previously unknown role of HDAC11 as a negative epigenetic regulator of T-cell effector phenotype and function.


Assuntos
Regulação Neoplásica da Expressão Gênica , Doença Enxerto-Hospedeiro/imunologia , Histona Desacetilase 1/genética , Linfoma de Células B/imunologia , Proteínas com Domínio T/genética , Linfócitos T/imunologia , Transferência Adotiva , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Cromatina/química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Histona Desacetilase 1/deficiência , Histona Desacetilase 1/imunologia , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Transdução de Sinais , Proteínas com Domínio T/imunologia , Linfócitos T/patologia , Linfócitos T/transplante , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
J Leukoc Biol ; 102(2): 475-486, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28550123

RESUMO

Epigenetic changes in chromatin structure have been recently associated with the deregulated expression of critical genes in normal and malignant processes. HDAC11, the newest member of the HDAC family of enzymes, functions as a negative regulator of IL-10 expression in APCs, as previously described by our lab. However, at the present time, its role in other hematopoietic cells, specifically in neutrophils, has not been fully explored. In this report, for the first time, we present a novel physiologic role for HDAC11 as a multifaceted regulator of neutrophils. Thus far, we have been able to demonstrate a lineage-restricted overexpression of HDAC11 in neutrophils and committed neutrophil precursors (promyelocytes). Additionally, we show that HDAC11 appears to associate with the transcription machinery, possibly regulating the expression of inflammatory and migratory genes in neutrophils. Given the prevalence of neutrophils in the peripheral circulation and their central role in the first line of defense, our results highlight a unique and novel role for HDAC11. With the consideration of the emergence of new, selective HDAC11 inhibitors, we believe that our findings will have significant implications in a wide range of diseases spanning malignancies, autoimmunity, and inflammation.


Assuntos
Regulação da Expressão Gênica/imunologia , Hematopoese/imunologia , Histona Desacetilases/imunologia , Neutrófilos/enzimologia , Animais , Imunoprecipitação da Cromatina , Epigênese Genética , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Reação em Cadeia da Polimerase
9.
Mol Immunol ; 63(2): 579-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25155994

RESUMO

Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies.


Assuntos
Epigênese Genética , Histona Desacetilases/metabolismo , Células Mieloides/citologia , Animais , Antígeno CD11b/metabolismo , Compartimento Celular , Diferenciação Celular , Proliferação de Células , Separação Celular , Proteínas de Fluorescência Verde/metabolismo , Interleucina-10/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
J Immunol ; 193(6): 2850-62, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25108026

RESUMO

APCs are critical in T cell activation and in the induction of T cell tolerance. Epigenetic modifications of specific genes in the APC play a key role in this process, and among them histone deacetylases (HDACs) have emerged as key participants. HDAC6, one of the members of this family of enzymes, has been shown to be involved in regulation of inflammatory and immune responses. In this study, to our knowledge we show for the first time that genetic or pharmacologic disruption of HDAC6 in macrophages and dendritic cells results in diminished production of the immunosuppressive cytokine IL-10 and induction of inflammatory APCs that effectively activate Ag-specific naive T cells and restore the responsiveness of anergic CD4(+) T cells. Mechanistically, we have found that HDAC6 forms a previously unknown molecular complex with STAT3, association that was detected in both the cytoplasmic and nuclear compartments of the APC. By using HDAC6 recombinant mutants we identified the domain comprising amino acids 503-840 as being required for HDAC6 interaction with STAT3. Furthermore, by re-chromatin immunoprecipitation we confirmed that HDAC6 and STAT3 are both recruited to the same DNA sequence within the Il10 gene promoter. Of note, disruption of this complex by knocking down HDAC6 resulted in decreased STAT3 phosphorylation--but no changes in STAT3 acetylation--as well as diminished recruitment of STAT3 to the Il10 gene promoter region. The additional demonstration that a selective HDAC6 inhibitor disrupts this STAT3/IL-10 tolerogenic axis points to HDAC6 as a novel molecular target in APCs to overcome immune tolerance and tips the balance toward T cell immunity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Histona Desacetilases/imunologia , Interleucina-10/imunologia , Fator de Transcrição STAT3/imunologia , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Expressão Gênica , Regulação da Expressão Gênica , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/genética , Tolerância Imunológica , Inflamação/imunologia , Interleucina-10/biossíntese , Ativação Linfocitária/imunologia , Macrófagos/enzimologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Oligopeptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes/genética , Fator de Transcrição STAT3/química , Transcrição Gênica
11.
Mol Immunol ; 60(1): 44-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747960

RESUMO

The anti-inflammatory cytokine IL-10 is a key modulator of immune responses. A better understanding of the regulation of this cytokine offers the possibility of tipping the balance of the immune response toward either tolerance, or enhanced immune responses. Histone deacetylases (HDACs) have been widely described as negative regulators of transcriptional regulation, and in this context, the primarily nuclear protein HDAC11 was shown to repress il-10 gene transcriptional activity in antigen-presenting cells (APCs). Here we report that another HDAC, HDAC6, primarily a cytoplasmic protein, associates with HDAC11 and modulates the expression of IL-10 as a transcriptional activator. To our knowledge, this is the first demonstration of two different HDACs being recruited to the same gene promoter to dictate divergent transcriptional responses. This dynamic interaction results in dynamic changes in the expression of IL-10 and might help to explain the intrinsic plasticity of the APC to determine T-cell activation versus T-cell tolerance.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Histona Desacetilases/imunologia , Interleucina-10/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica , Desacetilase 6 de Histona , Histona Desacetilases/genética , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , Linfócitos T/imunologia , Transcrição Gênica , Ativação Transcricional/imunologia
12.
J Clin Invest ; 123(11): 4612-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24216476

RESUMO

A dynamic interaction occurs between the lymphoma cell and its microenvironment, with each profoundly influencing the behavior of the other. Here, using a clonogenic coculture growth system and a xenograft mouse model, we demonstrated that adhesion of mantle cell lymphoma (MCL) and other non-Hodgkin lymphoma cells to lymphoma stromal cells confers drug resistance, clonogenicity, and induction of histone deacetylase 6 (HDAC6). Furthermore, stroma triggered a c-Myc/miR-548m feed-forward loop, linking sustained c-Myc activation, miR-548m downregulation, and subsequent HDAC6 upregulation and stroma-mediated cell survival and lymphoma progression in lymphoma cell lines, primary MCL and other B cell lymphoma cell lines. Treatment with an HDAC6-selective inhibitor alone or in synergy with a c-Myc inhibitor enhanced cell death, abolished cell adhesion­mediated drug resistance, and suppressed clonogenicity and lymphoma growth ex vivo and in vivo. Together, these data suggest that the lymphoma-stroma interaction in the lymphoma microenvironment directly impacts the biology of lymphoma through genetic and epigenetic regulation, with HDAC6 and c-Myc as potential therapeutic targets.


Assuntos
Genes myc , Histona Desacetilases/genética , Linfoma de Células B/genética , MicroRNAs/genética , Animais , Adesão Celular , Linhagem Celular Tumoral , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Desacetilase 6 de Histona , Humanos , Linfoma de Células B/patologia , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transfecção , Microambiente Tumoral
13.
Melanoma Res ; 23(5): 341-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23963286

RESUMO

Melanoma is the deadliest skin cancer, and its incidence has been increasing faster than any other cancer. Although immunogenic, melanoma is not effectively cleared by host immunity. In this study, we investigate the therapeutic, antimelanoma potential of the histone deacetylase inhibitor (HDACi) panobinostat (LBH589) by assessing both its cytotoxic effects on melanoma cells as well as enhancement of immune recognition of melanoma. Utilizing murine and human melanoma cell lines, we analyzed the effects of LBH589 on proliferation and survival. In addition, we analyzed the expression of several immunologically relevant surface markers and melanoma differentiation antigens, and the ability of LBH589-treated melanoma to activate antigen-specific T cells. Finally, we assessed the in-vivo effects of LBH589 in a mouse melanoma model. Low nanomolar concentrations of LBH589 inhibit the growth of all melanoma cell lines tested, but not normal melanocytes. This inhibition is characterized by increased apoptosis as well as a G1 cell cycle arrest. In addition, LBH589 augments the expression of major histocompatibility complex and costimulatory molecules on melanoma cells leading to an increased ability to activate antigen-specific T cells. Treatment also increases expression of melanoma differentiation antigens. In vivo, LBH589 treatment of melanoma-bearing mice results in a significant increase in survival. However, in immunodeficient mice, the therapeutic effect of LBH589 is lost. Taken together, LBH589 exerts a dual effect upon melanoma cells by affecting not only growth/survival but also by increasing melanoma immunogenicity. These effects provide the framework for future evaluation of this HDAC inhibitor in melanoma treatment.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Imunidade Celular/efeitos dos fármacos , Indóis/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Hospedeiro Imunocomprometido , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/enzimologia , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Panobinostat , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Res ; 72(17): 4440-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22728650

RESUMO

Mantle cell lymphoma (MCL) is an aggressive and incurable subtype of B-cell non-Hodgkin lymphomas. Although patients often respond initially to first-line treatment with chemotherapy plus monoclonal antibodies, relapse and decreased response to further lines of treatment eventually occurs. Harnessing the immune system to elicit its exquisite specificity and long-lasting protection might provide sustained MCL immunity that could potentially eradicate residual malignant cells responsible for disease relapse. Here, we show that genetic or pharmacologic disruption of Stat3 in malignant B cells augments their immunogenicity leading to better activation of antigen-specific CD4(+) T cells and restoration of responsiveness of tolerized T cells. In addition, treatment of MCL-bearing mice with a specific Stat3 inhibitor resulted in decreased Stat3 phosphorylation in malignant B cells and anti-lymphoma immunity in vivo. Our findings therefore indicate that Stat3 inhibition may represent a therapeutic strategy to overcome tolerance to tumor antigens and elicit a strong immunity against MCL and other B-cell malignancies.


Assuntos
Linfoma de Células B/imunologia , Linfoma de Célula do Manto/imunologia , Fator de Transcrição STAT3/antagonistas & inibidores , Imunidade Adaptativa , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Compostos Clorados/administração & dosagem , Compostos Clorados/farmacologia , Progressão da Doença , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/metabolismo , Masculino , Camundongos , Camundongos SCID , Compostos de Platina/administração & dosagem , Compostos de Platina/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Linfócitos T/imunologia
15.
J Immunol ; 186(7): 3986-96, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21368229

RESUMO

APCs are important in the initiation of productive Ag-specific T cell responses and the induction of T cell anergy. The inflammatory status of the APC at the time of encounter with Ag-specific T cells plays a central role in determining such divergent T cell outcomes. A better understanding of the regulation of proinflammatory and anti-inflammatory genes in its natural setting, the chromatin substrate, might provide novel insights to overcome anergic mechanisms mediated by APCs. In this study, we show for the first time, to our knowledge, that treatment of BALB/c murine macrophages with the histone deacetylase inhibitor LAQ824 induces chromatin changes at the level of the IL-10 gene promoter that lead to enhanced recruitment of the transcriptional repressors HDAC11 and PU.1. Such an effect is associated with diminished IL-10 production and induction of inflammatory cells able of priming naive Ag-specific T cells, but more importantly, capable of restoring the responsiveness of anergized Ag-specific CD4(+) T cells.


Assuntos
Adjuvantes Imunológicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Mediadores da Inflamação/farmacologia , Interleucina-10/antagonistas & inibidores , Interleucina-10/genética , Macrófagos Peritoneais/imunologia , Transcrição Gênica/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Indóis , Interleucina-10/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Panobinostat , Baço/citologia , Baço/enzimologia , Baço/imunologia , Transcrição Gênica/efeitos dos fármacos
16.
Immunol Lett ; 131(2): 126-30, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20346983

RESUMO

CD8 T cell tolerance, once thought to be largely a result of clonal deletion, is now appreciated to be much more complex, additionally involving multiple permutations of partial loss of effector function in residual clonal populations. This is especially important in the context of tumor immunity, in which persistent tolerized cytotoxic CD8 T cells (CTL), if reactivated, could potentially mount a protective response. Previously we have shown that antigen-presenting cells (APCs) with a targeted disruption of STAT3 break tolerance in CD4 T cells. Here we evaluate the STAT3-defective APC in terms of its ability to induce a productive CTL response. Our data demonstrate that macrophages derived from conditional STAT3 knockout mice are superior to wild-type macrophages in terms of their ability to prime cognate CTL responses, and to cross-present tumor-derived antigen to CTLs in vitro. CTLs cultured with STAT3-deficient APCs demonstrated a stronger proliferative response and produced increased amounts of IFN-gamma and TNF-alpha, all of which have been shown to be diminished in tumor-tolerized CD8 T cells. Targeting STAT3 signaling represents therefore an enticing strategy to augment CTL responses in the tumor-bearing host.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer , Apresentação Cruzada , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Apresentação Cruzada/genética , Citotoxicidade Imunológica/genética , Interferon gama/biossíntese , Interferon gama/genética , Interferon gama/metabolismo , Ativação Linfocitária/genética , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Immunol Lett ; 125(2): 114-8, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19555720

RESUMO

Dendritic cells (DCs) differentiated in the presence of IL-10 preferentially induce regulatory T-cells and tolerance. Whether the tolerogenic properties displayed by these DCs (Tol-DCs) can be overcome has not been fully explored. Here we show for the first time that Tol-DCs express higher levels of TLR5 mRNA, but not TLR4 or TLR9 mRNA relative to DCs differentiated with GM-CSF and IL-4 (BM-DCs). In response to flagellin, a natural TLR-5 ligand, Tol-DCs produced IL-12 but not IL-10. Unlike Tol-DCs stimulated with LPS, which produce high levels of IL-10 and fail to generate a cognate inflammatory response in CD4(+) T-cells, flagellin-stimulated Tol-DCs promoted the differentiation of CD4(+) T cells with a T-helper 1 phenotype. The divergent T-cell outcomes induced by Tol-DCs in response to different TLR-ligands highlights not only their plasticity, but also points to TLR5 ligation as a potential strategy to overcome tolerance in environments that are otherwise conducive to immune unresponsiveness.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Interferon gama/metabolismo , Interleucina-12/metabolismo , Células Th1/metabolismo , Receptor 5 Toll-Like/metabolismo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Células da Medula Óssea/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Flagelina/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ligação Proteica , Receptores de Antígenos de Linfócitos T , Células Th1/imunologia , Células Th1/patologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia
18.
Nat Immunol ; 10(1): 92-100, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19011628

RESUMO

Antigen-presenting cells (APCs) induce T cell activation as well as T cell tolerance. The molecular basis of the regulation of this critical 'decision' is not well understood. Here we show that HDAC11, a member of the HDAC histone deacetylase family with no prior defined physiological function, negatively regulated expression of the gene encoding interleukin 10 (IL-10) in APCs. Overexpression of HDAC11 inhibited IL-10 expression and induced inflammatory APCs that were able to prime naive T cells and restore the responsiveness of tolerant CD4+ T cells. Conversely, disruption of HDAC11 in APCs led to upregulation of expression of the gene encoding IL-10 and impairment of antigen-specific T cell responses. Thus, HDAC11 represents a molecular target that influences immune activation versus immune tolerance, a critical 'decision' with substantial implications in autoimmunity, transplantation and cancer immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Tolerância Imunológica/genética , Interleucina-10/genética , Animais , Células Apresentadoras de Antígenos/enzimologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Regulação para Baixo , Histona Desacetilases/genética , Humanos , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C
19.
Eur J Immunol ; 37(11): 3164-75, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17948265

RESUMO

Toll-like receptors (TLR) expressed by cells of the immune system play a central role in the generation of immune responses against pathogens. Following TLR ligation, both pro-inflammatory and anti-inflammatory mediators are produced in order to elicit an immune response that controls the microbial infection while limiting tissue damage. Among these mediators, the pro-inflammatory cytokine IL-12 and the anti-inflammatory cytokine IL-10 are known to play major roles. Here, we show that in vitro or in vivo stimulation with flagellin, the TLR5 ligand, does not result in IL-10 production. Furthermore, flagellin inhibits IL-10 production by other specific TLR ligands at the protein and mRNA levels while increasing IL-12p70 production. Several studies have linked the activation of extracellular signal-regulated kinases with IL-10 induction by TLR. We have observed that LPS-induced extracellular signal-regulated kinase activation was significantly decreased in flagellin-treated macrophages, suggesting that this pathway might play a role in the inhibition of IL-10 production observed in flagellin-treated macrophages. Flagellin-mediated IL-10 inhibition was not observed in cells that do not express TLR5, supporting that this effect is indeed TLR5-dependent. This study provides a new insight into the role of flagellin recognition by TLR5 in shaping the immune response elicited by flagellated microorganisms.


Assuntos
Flagelina/metabolismo , Inflamação/metabolismo , Interleucina-10/biossíntese , Receptor 5 Toll-Like/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Interleucina-12/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Blood ; 107(7): 2871-8, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16339406

RESUMO

Bone marrow-derived antigen-presenting cells (APCs) play a central role in the induction of tolerance to tumor antigens expressed by B-cell lymphomas. Here we show that in vivo disruption of this APC-mediated tolerogenic mechanism unveils an intrinsic ability of malignant B cells to efficiently present tumor antigens to antigen-specific CD4+ T cells, resulting in a strong antitumor effect. This intrinsic antigen-presenting ability of malignant B cells is, however, overridden by tolerogenic bone marrow-derived APCs, leading instead to T-cell unresponsiveness and lack of antitumor effect. These results highlight the concept that therapeutic strategies aimed at enhancing the antigen-presenting function of B-cell lymphomas might not succeed unless the tolerogenic mechanisms mediated by bone marrow-derived APCs are disrupted in the first place.


Assuntos
Tolerância Imunológica , Ativação Linfocitária , Linfoma de Células B/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Citocinas/metabolismo , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA