Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38187529

RESUMO

White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. GWAS identified TRIM47 at 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found selectively expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially-induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we identified the highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription and vacuole formation. Together, we confirm that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation. SUMMARY STATEMENT: TRIM47, top genetic risk factor for white matter hyperintensity formation, is a negative regulator of autophagy in brain endothelial cells and implicates a novel cellular mechanism for age-related cerebrovascular changes.

3.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546935

RESUMO

Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the ß-amyloid (Aß) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aß deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aß immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT: The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.

4.
J Control Release ; 354: 208-220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623695

RESUMO

Image guided nose-to-brain drug delivery provides a non-invasive way to monitor drug delivered to the brain, and the intranasal administration could increase effective dose via bypassing Blood Brain Barrier (BBB). Here, we investigated the imaging of liposome-based drug delivery to the brain via intranasal administration, in which the liposome could penetrate mucus and could be detected by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) at 3T field strength. Liposomes were loaded with a computed tomography (CT) contrast agent, iohexol (Ioh-Lipo), which has specific amide protons exchanging at 4.3 ppm of Z-spectrum (or CEST spectrum). Ioh-Lipo generated CEST contrasts of 35.4% at 4.3 ppm, 1.8% at -3.4 ppm and 20.6% at 1.2 ppm in vitro. After intranasal administration, these specific CEST contrasts were observed in both olfactory bulb (OB) and frontal lobe (FL) in the case of 10% polyethylene glycol (PEG) Ioh-Lipo. We observed obvious increases in CEST contrast in OB half an hour after the injection of 10% PEG Ioh-Lipo, with a percentage increase of 62.0% at 4.3 ppm, 10.9% at -3.4 ppm and 25.7% at 1.2 ppm. Interestingly, the CEST map at 4.3 ppm was distinctive from that at -3.4 pm and 1.2 ppm. The highest contrast of 4.3 ppm was at the external plexiform layer (EPL) and the region between left and right OB (LROB), while the CEST contrast at -3.4 ppm had no significant difference among all investigated regions with slightly higher signal in olfactory limbus (OL, between OB and FL) and FL, as validated with histology. While no substantial increase of CEST contrast at 4.3 ppm, -3.4 ppm or 1.2 ppm was observed in OB and FL when 1% PEG Ioh-Lipo was administered. We demonstrated for the first time the feasibility of non-invasively detecting the nose-to-brain delivery of liposomes using CEST MRI. This multiple-contrast approach is necessary to image the specific distribution of iohexol and liposome simultaneously and independently, especially when designing drug carriers for nose-to-brain drug delivery.


Assuntos
Iohexol , Lipossomos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Sistemas de Liberação de Medicamentos , Meios de Contraste
5.
J Neurochem ; 165(1): 55-75, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36549843

RESUMO

Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Humanos , Animais , Apolipoproteína E4/genética , Astrócitos/metabolismo , Apolipoproteínas E/metabolismo , Doença de Alzheimer/metabolismo , Bainha de Mielina/metabolismo , Colesterol/metabolismo , Diferenciação Celular , Apolipoproteína E3/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo
6.
J Neuropathol Exp Neurol ; 81(9): 717-730, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35779013

RESUMO

White matter degradation in the frontal lobe is one of the earliest detectable changes in aging and Alzheimer disease. The ε4 allele of apolipoprotein E (APOE4) is strongly associated with such myelin pathology but the underlying cellular mechanisms remain obscure. We hypothesized that, as a lipid transporter, APOE4 directly triggers pathology in the cholesterol-rich myelin sheath independent of AD pathology. To test this, we performed immunohistochemistry on brain tissues from healthy controls, sporadic, and familial Alzheimer disease subjects. While myelin basic protein expression was largely unchanged, in frontal cortex the number of oligodendrocytes (OLs) was significantly reduced in APOE4 brains independent of their Braak stage or NIA-RI criteria. This high vulnerability of OLs was confirmed in humanized APOE3 or APOE4 transgenic mice. A gradual decline of OL numbers was found in the aging brain without associated neuronal loss. Importantly, the application of lipidated human APOE4, but not APOE3, proteins significantly reduced the formation of myelinating OL in primary cell culture derived from Apoe-knockout mice, especially in cholesterol-depleted conditions. Our findings suggest that the disruption of myelination in APOE4 carriers may represent a direct OL pathology, rather than an indirect consequence of amyloid plaque formation or neuronal loss.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Bainha de Mielina , Oligodendroglia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteína E3 , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E , Humanos , Camundongos , Camundongos Transgênicos , Bainha de Mielina/patologia
7.
Front Sports Act Living ; 4: 795897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252854

RESUMO

The primary purpose was to simplify external load data obtained during Division-I (DI) basketball competitions via principal component analysis (PCA). A secondary purpose was to determine if the PCA results were sensitive to load demands of different positional groups (POS). Data comprised 229 observations obtained from 10 men's basketball athletes participating in NCAA DI competitions. Each athlete donned an inertial measurement unit that was affixed to the same location on their shorts prior to competition. The PCA revealed two factors that possessed eigenvalues >1.0 and explained 81.42% of the total variance. The first factor comprised total decelerations (totDEC, 0.94), average speed (avgSPD, 0.90), total accelerations (totACC, 0.85), total mechanical load (totMECH, 0.84), and total jump load (totJUMP, 0.78). Maximum speed (maxSPD, 0.94) was the lone contributor to the second factor. Based on the PCA, external load variables were included in a multinomial logistic regression that predicted POS (Overall model, p < 0.0001; AUCcenters = 0.93, AUCguards = 0.88, AUCforwards = 0.80), but only maxSPD, totDEC, totJUMP, and totMECH were significant contributors to the model's success (p < 0.0001 for each). Even with the high significance, the model still had some issues differentiating between guards and forwards, as in-game demands often overlap between the two positions. Nevertheless, the PCA was effective at simplifying a large external load dataset collected on NCAA DI men's basketball athletes. These data revealed that maxSPD, totDEC, totJUMP, and totMECH were the most sensitive to positional differences during competitions. To best characterize competition demands, such variables may be used to individualize training and recovery regimens most effectively.

8.
Magn Reson Med ; 87(3): 1529-1545, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34657318

RESUMO

PURPOSE: To optimize and apply deep neural network based CEST (deepCEST) and apparent exchange dependent-relaxation (deepAREX) for imaging the mouse brain with Alzheimer's disease (AD) at 3T MRI. METHODS: CEST and T1 data of central and anterior brain slices of 10 AD mice and 10 age-matched wild type (WT) mice were acquired at a 3T animal MRI scanner. The networks of deepCEST/deepAREX were optimized and trained on the WT data. The CEST/AREX contrasts of AD and WT mice predicted by the networks were analyzed and further validated by immunohistochemistry. RESULTS: After optimization and training on CEST data of WT mice, deepCEST/deepAREX could rapidly (~1 s) generate precise CEST and AREX results for unseen CEST data of AD mice, indicating the accuracy and generalization of the networks. Significant lower amide weighted (3.5 ppm) signal related to amyloid ß-peptide (Aß) plaque depositions, which was validated by immunohistochemistry results, was detected in both central and anterior brain slices of AD mice compared to WT mice. Decreased magnetization transfer (MT) signal was also found in AD mice especially in the anterior slice. CONCLUSION: DeepCEST/deepAREX could rapidly generate accurate CEST/AREX contrasts in animal study. The well-optimized deepCEST/deepAREX have potential for AD differentiation at 3T MRI.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Redes Neurais de Computação
9.
Sci Adv ; 6(20): eaba3884, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426510

RESUMO

Altered cerebral glucose uptake is one of the hallmarks of Alzheimer's disease (AD). A dynamic glucose-enhanced (DGE) magnetic resonance imaging (MRI) approach was developed to simultaneously monitor d-glucose uptake and clearance in both brain parenchyma and cerebrospinal fluid (CSF). We observed substantially higher uptake in parenchyma of young (6 months) transgenic AD mice compared to age-matched wild-type (WT) mice. Notably lower uptakes were observed in parenchyma and CSF of old (16 months) AD mice. Both young and old AD mice had an obviously slower CSF clearance than age-matched WT mice. This resembles recent reports of the hampered CSF clearance that leads to protein accumulation in the brain. These findings suggest that DGE MRI can identify altered glucose uptake and clearance in young AD mice upon the emergence of amyloid plaques. DGE MRI of brain parenchyma and CSF has potential for early AD stratification, especially at 3T clinical field strength MRI.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Glucose/metabolismo , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA